Journal of Chemical Ecology

, Volume 33, Issue 3, pp 513–524 | Cite as

Sequestration of Furostanol Saponins by Monophadnus Sawfly Larvae

  • José M. Prieto
  • Urs Schaffner
  • Alison Barker
  • Alessandra Braca
  • Tiziana Siciliano
  • Jean-Luc BoevéEmail author


Sawfly larvae of the tribe Phymatocerini (Hymenoptera: Tenthredinidae), which are specialized on toxic plants in the orders Liliales and Ranunculales, exude a droplet of deterrent hemolymph upon attack by a predator. We investigated whether secondary plant metabolites from Ranunculaceae leaves are sequestered by phymatocerine Monophadnus species, i.e., Monophadnus alpicola feeding upon Pulsatilla alpina and Monophadnus monticola feeding upon Ranunculus lanuginosus. Moreover, two undescribed Monophadnus species were studied: species A collected from Helleborus foetidus and species B collected from Helleborus viridis. Comparative high-performance liquid chromatographic–photodiode array detection–electrospray ionization–mass spectrometric analyses of plant leaf and insect hemolymph extracts revealed the presence of furostanol saponins in all samples. Larvae of species A and B actively sequestered (25R)-26-[(α-l-rhamnopyranosyl)oxy]-22α-methoxyfurost-5-en-3β-yl O-β-d-glucopyranosyl-(1→3)-O-[6-acetyl-β-d-glucopyranosyl-(1→3)]-O-β-d-glucopyranoside (compound 1). This compound occurred at a 65- to 200-fold higher concentration in the hemolymph of the two species (1.6 and 17.5 μmol/g FW, respectively) than in their host plant (0.008 and 0.268 μmol/g FW, respectively). In M. monticola, compound 1 was found at a concentration (1.2 μmol/g FW) similar to that in the host plant (1.36 μmol/g FW). The compound could not be detected consistently in M. alpicola larvae where, however, a related saponin may be present. Additional furostanol saponins were found in H. foetidus and H. viridis, but not in the two Monophadnus species feeding on them, indicating that sequestration of compound 1 is a highly specific process. In laboratory bioassays, crude hemolymph of three Monophadnus species showed a significant feeding deterrent activity against a potential predator, Myrmica rubra ant workers. Isolated furostanol saponins were also active against the ants, at a concentration range similar to that found in the hemolymph. Thus, these compounds seem to play a major role for chemical defense of Monophadnus larvae, although other plant secondary metabolites (glycosylated ecdysteroids) were also detected in their hemolymph. Physiological and ecological implications of the sequestered furostanol saponins are discussed.


Monophadnus sawfly larvae Ranunculaceae Helleborus Ranunculus Pulsatilla Antipredator defense Easy bleeding Sequestration Hemolymph Furostanol saponins 



We thank Prof. N. de Tommasi (Dipartimento di Scienze Farmaceutiche, Università di Salerno, Italy) for advice and registering the NMR spectra available for our studies; Dr A. Taeger for advice on sawfly identification; and Prof. M. Hilker and two anonymous referees for their constructive reviews. The authors acknowledge the financial support provided by the European Community’s Improving Human Potential Programme under contract HPRN-CT-1999-00054 (INCHECO) and the Swiss Bundesamt für Bildung und Wissenschaft.


  1. Applebaum, S. W. and Birk, Y. 1979. Saponins, pp. 539–566, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores: Their Interactions with Secondary Metabolites. Academic Press, New York.Google Scholar
  2. Barker, A., Schaffner, U., and Boevé, J.-L. 2002. Host-specificity and host recognition in a chemically defended herbivore, the tenthredinid sawfly Rhadinoceraea nodicornis. Entomol. Exp. Appl. 104:61–68.CrossRefGoogle Scholar
  3. Boevé, J.-L. and Müller, C. 2005. Defence effectiveness of easy bleeding sawfly larvae towards invertebrate and avian predators. Chemoecology 15:51–58.CrossRefGoogle Scholar
  4. Boevé, J.-L. and Schaffner, U. 2003. Why does the larval integument of some sawfly species disrupt so easily? The harmful hemolymph hypothesis. Oecologia 134:104–111.PubMedCrossRefGoogle Scholar
  5. Bowers, M. D. 1992. The evolution of unpalatability and the cost of chemical defense in insects, pp. 216–244, in B. D. Roitberg and M. B. Isman (eds.). Insect Chemical Ecology. An Evolutionary Approach. Chapman and Hall, New York.Google Scholar
  6. Bowers, M. D., Boockvar, K., and Collinge, S. K. 1993. Iridoid glycosides of Chelone glabra(Scrophulariaceae) and their sequestration by larvae of a sawfly, Tenthredo grandis (Tenthredinidae). J. Chem. Ecol. 19:815–823.CrossRefGoogle Scholar
  7. Braca, A., Prieto, J. M., De Tommasi, N., Tomè, F., and Morelli, I. 2004. Furostanol saponins and quercetin glycosides from the leaves of Helleborus viridis L. Phytochemistry 65:2921–2928.PubMedCrossRefGoogle Scholar
  8. de Combarieu, E., Falzoni, M., Fuzzati, N., Gattesco, F., Giori, A., Lovati, M., and Pace, R. 2002. Identification of Ruscus steroidal saponins by HPLC–MS analysis. Fitoterapia 73:583–596.PubMedCrossRefGoogle Scholar
  9. Duffey, S. S. 1980. Sequestration of plant natural products by insects. Annu. Rev. Entomol. 25:447–477.CrossRefGoogle Scholar
  10. Evans, W. C. 1989. Trease and Evans’ Pharmacognosy, 13th edn. Bailliere Tindall, London, pp 514–516.Google Scholar
  11. Gillespie, J. J., Kjer, K. M., Duckett, C. N., and Tallamy, D. W. 2003. Convergent evolution of cucurbitacin feeding in spatially isolated rootworm taxa (Coleoptera: Chrysomelidae; Galerucinae, Luperini). Mol. Phylogenet. Evol. 29:161–175.PubMedCrossRefGoogle Scholar
  12. Hardman, R. and Benjamin, T. V. 1976. The co-occurrence of ecdysones with bufadienolides and steroidal saponins in the genus Helleborus. Phytochemistry 15:1515–1516.CrossRefGoogle Scholar
  13. Harmatha, J. 2000. Chemo-ecological role of spirostanol saponins in the interaction between plants and insects, pp. 129–141, in W. Olezsek and A. Marston (eds.). Saponins in Food, Feedstuffs and Medicinal Plants. Kluwer, Dordrecht.Google Scholar
  14. Laurent, P., Braekman, J.-C., and Daloze, D. 2005. Insect chemical defence. Topics Curr. Chem. 240:167–229.Google Scholar
  15. Liang, F., Li, L.-J., Abliz, Z., Yang, Y.-C., and Shi, J.-G. 2002. Structural characterization of steroidal saponins by electrospray ionization and fast-atom bombardment tandem mass spectrometry. Rap. Commun. Mass Spectrom. 16:1168–1173.CrossRefGoogle Scholar
  16. Liston, A. 1995. Compendium of European Sawflies. Chalastos Forestry, Gottfrieding, Germany.Google Scholar
  17. Morton, T. C. and Vencl, F. V. 1998. Larval beetles form a defense from recycled host-plant chemicals discharged as fecal wastes. J. Chem. Ecol. 24:765–785.CrossRefGoogle Scholar
  18. Müller, C., Agerbirk, N., Olsen, C. E., Boevé, J.-L., Schaffner, U., and Brakefield, P. M. 2001. Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J. Chem. Ecol. 27:2505–2516.PubMedCrossRefGoogle Scholar
  19. Müller, C. and Brakefield, P. M. 2003. Analysis of a chemical defense in sawfly larvae: easy bleeding targets predatory wasps in late summer. J. Chem. Ecol. 29:2683–2694.PubMedCrossRefGoogle Scholar
  20. Petricic, J. 1974. Genus Helleborus. Chemistry of subterranean parts. Acta Pharm. Jugosl. 24:179–185.Google Scholar
  21. Schaffner, U., Boevé, J.-L., Gfeller, H., and Schlunegger, U. P. 1994. Sequestration of Veratrum alkaloids by specialist Rhadinoceraea nodicornis Konow (Hymenoptera, Tenthredinidae) and its ecoethological implications. J. Chem. Ecol. 20:3233–3250.CrossRefGoogle Scholar
  22. Termonia, A., Pasteels, J. M., Windsor, D. M., and Milinkovitch, M. C. 2002. Dual chemical sequestration: a key mechanism in transitions among ecological specialization. Proc. R. Soc. Lond. B 269:1–6.CrossRefGoogle Scholar
  23. Teuscher, E. and Lindequist, U. 1987. Biogene Gifte. Biologie, Chemie, Pharmakologie. Gustav Fischer Verlag, Stuttgart.Google Scholar
  24. Tschesche, R., Wagner, R., and Jha, H. C. 1984. A furostanol glycoside from Helleborus macranthus. Phytochemistry 23:695–696.CrossRefGoogle Scholar
  25. Vencl, F. V., Morton, T. C., Mumma, R. O., and Schultz, J. C. 1999. Shield defense of a larval tortoise beetle. J. Chem. Ecol. 25:549–566.CrossRefGoogle Scholar
  26. Wissner, W. and Kating, H. 1974. Botanical and phytochemical investigations of species of the genus Helleborus growing in Europe and Asian Minor. II. Comparative phytochemical investigations of the cardio active glycosides and saponins. Planta Med. 26:228–249.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • José M. Prieto
    • 1
  • Urs Schaffner
    • 2
  • Alison Barker
    • 2
  • Alessandra Braca
    • 1
  • Tiziana Siciliano
    • 1
  • Jean-Luc Boevé
    • 3
    Email author
  1. 1.Dipartimento di Chimica Bioorganica e BiofarmaciaUniversità di PisaPisaItaly
  2. 2.CABI-Bioscience Switzerland CentreDelémontSwitzerland
  3. 3.Department of EntomologyRoyal Belgian Institute of Natural SciencesBruxellesBelgium

Personalised recommendations