Journal of Chemical Ecology

, Volume 33, Issue 1, pp 183–198 | Cite as

Seasonal Variation in Volatile Compound Profiles of Preen Gland Secretions of the Dark-eyed Junco (Junco hyemalis)

  • Helena A. Soini
  • Sara E. Schrock
  • Kevin E. Bruce
  • Donald Wiesler
  • Ellen D. Ketterson
  • Milos V. Novotny


Quantitative stir bar sorptive extraction methodology, followed by gas chromatography-mass spectrometry (GC-MS) and element-specific atomic emission detection (AED) were utilized to analyze seasonal changes in volatile components of preen oil secretions in Junco hyemalis. Juncos were held in long days to simulate breeding conditions, or short days to simulate nonbreeding conditions. Linear alcohols (C10–C18) were the major volatile compounds found in preen oil, and in both sexes their levels were higher when birds were housed on long as opposed to short days. Methylketones were found at lower levels, but were enhanced in both sexes during long days. Levels of 2-tridecanone, 2-tetradecanone, and 2-pentadecanone were also greater on long days, but only in males. Among carboxylic acids (C12, C14, and C16), linear but not branched acids showed some differences between the breeding and nonbreeding conditions, although the individual variation for acidic compounds was large. Qualitatively, more sulfur-containing compounds were found in males than females during the breeding season. Functionally, the large increase in linear alcohols in male and female preen oil during the breeding season may be an indication of altered lipid biosynthesis, which might signal reproductive readiness. Linear alcohols might also facilitate junco odor blending with plant volatiles in the habitat to distract mammalian predators. Some of the volatile compounds from preen oil, including linear alcohols, were also found on the wing feather surface, along with additional compounds that could have been of either metabolic or environmental origin.


Avian volatile compounds Preen oil Junco hyemalis Stir bar sorptive extraction Gas chromatography-mass spectrometry 



This work was jointly sponsored by the METACyt Initiative at Indiana University, and the Lilly Chemistry Alumni Chair funds (to M.V.N.) and the National Science Foundation grant NSF BSC 05-19211, 2005–2008 (to E.D.K.). We thank Mr. Michael Wigen for technical assistance.


  1. Apanius, V., Penn, D., Slev, P., Ruff, L. R., and Potts, W. K. 1997. The nature of selection on the major histocompatibility complex. Crit. Rev. Immunol. 17:179–224.PubMedGoogle Scholar
  2. Brown, J. L. and Eklund, A. 1994. Kin recognition and the major histocompatibility complex: An integrative review. Am. Nat. 143:435–461.CrossRefGoogle Scholar
  3. Bohnet, S., Rogers, L., Sasaki, G., and Kolattukydy, P. E. 1991. Estradiol induces proliferation of peroxisome-like microbodies and the production of 3-hydroxy fatty acid diesters, the female pheromones, in the uropygial glands of male and female mallards. J. Biol. Chem. 266:9795–9804.PubMedGoogle Scholar
  4. Bonadonna, F. and Nevitt, G. A. 2004. Partner-specific odor recognition in an Antarctic seabird. Science 306:835.PubMedCrossRefGoogle Scholar
  5. Burger, J. 1994. Metals in avian feathers: Bioindicators of environmental pollution. Rev. Environ. Toxicol. 5:203–311.Google Scholar
  6. Burger, B. V., Reiter, B., Borzyk, O., and du Plessis, M. A. 2004. Avian exocrine secretions. I. chemical characterization of the volatile fraction of the uropygial secretion of the green woodhoopoe, Phoeniculus purpureus. J. Chem. Ecol. 30:1603–1611.PubMedCrossRefGoogle Scholar
  7. Chatzivasileiadis, E. A., Boon, J. J., and Sabelis, M. W. 1999. Accumulation and turnover of 2-tridecanone in Tetranychus urticae and its consequences for resistance of wild and cultivated tomatoes. Exp. Appl. Acarol. 23:1011–1021.PubMedCrossRefGoogle Scholar
  8. Cheng, J. B. and Russell, D. W. 2004a. Mammalian wax biosynthesis. I. Identification of two fatty acyl-coenzyme A reductases with different substrate specifications and tissue distributions. J. Biol. Chem. 279:37789–37797.PubMedCrossRefGoogle Scholar
  9. Cheng, J. B. and Russell, D. W. 2004b. Mammalian wax biosynthesis. II. Expression cloning of wax synthase cDNAs encoding a member of the acyltransferase enzyme family. J. Biol. Chem. 279:37798–37807.PubMedCrossRefGoogle Scholar
  10. Clotfelter, E. D., O’Neal, D. M., Gaudioso, J. M., Casto, J. M., Parker-Renga, I. M., Snajdr, E. A., Duffy, D. L., Nolan, V. Jr., and Ketterson, E. D. 2004. Consequences of elevating plasma testosterone in females of a socially monogamous songbird: Evidence of constraints on male evolution? Horm. Behav. 46:171–178.PubMedCrossRefGoogle Scholar
  11. Dekker, M. H. A., Piersma, T., and Sinninghe Damsté, J. S. 2000. Molecular analysis of intact preen waxes of Calidris canutus (Aves: Scolopacidae) by gas chromatography/mass spectrometry. Lipids 35:533–541.PubMedCrossRefGoogle Scholar
  12. Douglas, H. D. III, Jones, T. H., and Conner, W. E. 2001. Heteropteran chemical repellents identified in the citrus odor of a seabird (crested auklet: Aethia cristatella): evolutionary convergence in chemical ecology. Naturwissenschaften 88:330–332.PubMedCrossRefGoogle Scholar
  13. Douglas, H. D. III, Jones, T. H., Conner, W. E., and Day, J. F. 2005. Chemical odorant of colonial seabird repels mosquitoes. J. Med. Entomol. 42:647–651.PubMedCrossRefGoogle Scholar
  14. Ekblom, R., Særher, S. A., Grahn, M., Fiske, P., Kålås, J. A., and Höglund, J. 2004. Major histocompatibility complex variation and mate choice in a lekking bird, the great snipe (Gallinago media). Mol. Ecol. 13:3821–3828.PubMedCrossRefGoogle Scholar
  15. Elder, W. H. 1954. The oil gland of birds. Wilson Bull. 66:6–31.Google Scholar
  16. Elowson, A. M. 1984. Spread-wing postures and the water repellency of feathers: A test of Rijke’s hypothesis. Auk 101:371–383.Google Scholar
  17. Fabricius, E. 1959. What makes plumage waterproof? Wildfowl Trust Reprints 10:105–113.Google Scholar
  18. Freeman-Gallant, C. R., Meguerdichian, M., Wheelwright, N. T., and Sollecito, S. V. 2003. Social pairing and female mating fidelity predicted by restriction fragment length polymorphism similarity at the major histocompatibility complex in a songbird. Mol. Ecol. 12:3077–3083.PubMedCrossRefGoogle Scholar
  19. Hagelin, J. H., Jones, I. L., and Rasmussen, L. E. L. 2003. A tangerine-scented social odour in a monogamous seabird. Proc. R. Soc. (London) B 270:1323–1329.CrossRefGoogle Scholar
  20. Jacob, J., Eigener, U., and Hoppe, U. 1997. The structure of preen gland waxes from pelicaniform birds containing 3,7-dimethyloctan-1-ol: An active ingredient against dermatophytes. Zeitschrift für Naturforschung 52:114–123.Google Scholar
  21. Ketterson, E. D., Nolan, V. Jr., and Sandell, M. 2005. Testosterone in females: A constraint on the evolution of sexual dimorphism? Am. Nat. 166:S85–S98.PubMedCrossRefGoogle Scholar
  22. Kolattukudy, P. E. 1970. Reduction of fatty acids to alcohols by cell-free preparations of Euglena gracilis. Biochemistry 9:1095–1102.PubMedCrossRefGoogle Scholar
  23. Kolattukudy, P. E., Bohnet, S., and Rogers, L. 1987. Diesters of 3-hydroxy fatty acids produced by the uropygial glands of female mallards uniquely during the mating season. J. Lipid Res. 28:582–588.PubMedGoogle Scholar
  24. Kubo, I., Muroi, H., and Kubo, A. 1993. Antibacterial activity of long-chain alcohols against Streptococcus mutans. J. Agric. Food Chem. 41:2447–2450.CrossRefGoogle Scholar
  25. Kubo, I., Muroi, H., and Kubo, A. 1995. Structural functions of antimicrobial long-chain alcohols and phenols. Bioorg. Med. Chem. 3:873–880.PubMedCrossRefGoogle Scholar
  26. Kubo, I., Fujita, T., Kubo, A., and Fujita, K. I. 2003. Modes of antifungal action of alkanols against Saccharomyces cerevisiae. Bioorg. Med. Chem. 11:1117–1122.PubMedCrossRefGoogle Scholar
  27. McDowell, P. G., Lwande, W., Deans, S. G., and Waterman, P. G. 1988. Volatile resin exudates from stem bark of Commiphora rostrata: Potential role in plant defence. Phytochemistry 27:2519–2521.CrossRefGoogle Scholar
  28. Menon, G. K. and Menon, J. 2000. Avian epidermal lipids: functional considerations and relationship to feathering. Am. Zool. 40:540–552.CrossRefGoogle Scholar
  29. Miller, M. M., Wang, C., Parisini, E., Coletta, R. D., Goto, R. M., Lee, S. Y., Barral, D. C., Townes, M., Roura-Mir, C., Ford, H. L., Brenner, M. B., and Dascher, C. C. 2005. Characterization of two avian MHC-like genes reveals an ancient origin of the CD1 family. Proc. Natl. Acad. Sci. U.S.A. 102:8674–8679.PubMedCrossRefGoogle Scholar
  30. Moyer, B. R., Rock, A. N., and Clayton, D. H. 2003. Experimental test of the importance of preen oil in rock doves (Columbia livia). Auk 120:490–496.CrossRefGoogle Scholar
  31. Nicolaides, N. 1974. Skin lipids: Their biochemical uniqueness. Science 186:19–26.PubMedCrossRefGoogle Scholar
  32. Nolan, V. Jr., Ketterson, E. D., Cristol, D. A., Rogers, C. M., Clotfelter, E. D., Titus, R. C., Schoech, S. J., and Snajdr, E. 2002. Dark-eyed junco: Junco hyemalis. Birds N. Am. 716:1–44.Google Scholar
  33. Odham, G. 1965. Feather waxes of birds. III. The chemical composition of the wax in the free flowing secretion from the preen gland of the mute swan (Gygnus olor). Arkiv foer Kemi 23:431–451.Google Scholar
  34. Odham, G. 1967. Studies of feather waxes of birds. IV. Further investigation of the free flowing preen gland secretion from species within the family of Anatidae. Arkiv foer Kemi 27:263–288.Google Scholar
  35. Penn, D. and Potts, W. 1998. Untrained mice distinguish MHC-determined odors. Physiol. Behav. 64:235–243.PubMedCrossRefGoogle Scholar
  36. Penn, D. and Potts, W. 1999. The evolution of mating preferences and major histocompatibility genes. Am. Nat. 153:145–164.CrossRefGoogle Scholar
  37. Penn, D. J., Oberzaucher, E., Grammer, K., Fischer, G., Soini, H. A., Wiesler, D., Novotny, M. V., Dixon, S. J., Xu, Y., and Brereton, R. G. 2006. Individual and gender fingerprints in human body odour. J. R. Soc. Interface. (in press).Google Scholar
  38. Porcelli, S. A., and Modlin, R. L. 1999. The CD1 system: Antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu. Rev. Immunolol. 17:297–329.CrossRefGoogle Scholar
  39. Potts, W. K. and Wakeland, E. K. 1990. Evolution of diversity at the major histocompatibility complex. Trends Ecol. Evol. 5:181–187.CrossRefGoogle Scholar
  40. Reneerkens, J., Piersma, T., and Sinninghe Damsté, J. S. 2002. Sandpipers (Scolopacidae) switch from monoester to diester preen waxes during courtship and incubation, but why? Proc. R. Soc. Lond., B 269:2135–2139.CrossRefGoogle Scholar
  41. Roper, T. J. 1999. Olfaction in birds. Adv. Study Behav. 28:247–332.CrossRefGoogle Scholar
  42. Salomonsen, J., Rathman Sørensen, M., Marston, D. A., Rogers, S. L., Collen, T., Van Hateren, A., Smith, A. L., Beal, R. K., Skjødt, K., and Kaufman, J. 2005. Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC. Proc. Natl. Acad. Sci. 102:8668–8673.PubMedCrossRefGoogle Scholar
  43. Schoech, S. J., Ketterson, E. D., Nolan, V. Jr., Sharp, P. J., and Buntin, J. D. 1998. The effect of exogenous testosterone on parental behavior, plasma prolactin and prolactin binding sites in dark-eyed juncos. Horm. Behav. 34:1–10.PubMedCrossRefGoogle Scholar
  44. Soini, H. A., Bruce, K. E., Wiesler, D., David, F., Sandra, P., and Novotny, M. V. 2005. Stir bar sorptive extraction: A new comprehensive sampling technique for determination of chemical signal profiles from biological media. J. Chem. Ecol. 31:377–392.PubMedCrossRefGoogle Scholar
  45. Soini, H. A., Bruce, K. E., Klouckova, I., Brereton, R. G., Penn, D. J., and Novotny, M. V. 2006. In-situ surface sampling of biological objects and preconcentration of their volatiles for chromatographic analysis. Anal. Chem. 78:7161–7168.PubMedCrossRefGoogle Scholar
  46. Spehr, M., Kelliher, K. R., Li, X.-H., Boehm, T., Leinders-Zufall, T., and Zufall, F. 2006. Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J. Neurosci. 15:1961–1970.CrossRefGoogle Scholar
  47. Stettenheim, P. 1972. The integument of birds, pp. 1–63, in D. S Farner and J. R. King (eds.). Avian Biology, Vol. II. Academic Press, New York.Google Scholar
  48. Veerle, J., Dauwe, T., Pinxten, R., Bervoets, L., Blust, R., and Eens, M. 2004. The importance of exogenous contamination on heavy metal levels in bird feathers. A field experiment with free-living great tits, Parus major. J. Environ. Monit. 6:356–360.PubMedCrossRefGoogle Scholar
  49. Vioque, J. and Kolattukudy, P. E. 1997. Resolution and purification of an aldehyde-generating and an alcohol-generating fatty acyl-CoA reductase from pea leaves (Pisum sativum L.). Arch. Biochem. Biophys. 340:64–72.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Helena A. Soini
    • 1
  • Sara E. Schrock
    • 2
  • Kevin E. Bruce
    • 1
  • Donald Wiesler
    • 1
  • Ellen D. Ketterson
    • 2
  • Milos V. Novotny
    • 1
  1. 1.Institute for Pheromone Research and Department of ChemistryIndiana UniversityBloomingtonUSA
  2. 2.Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations