Advertisement

Journal of Chemical Ecology

, Volume 32, Issue 12, pp 2695–2708 | Cite as

Behaviorally Active Green Leaf Volatiles for Monitoring the Leaf Beetle, Diorhabda elongata, a Biocontrol Agent of Saltcedar, Tamarix spp.

  • Allard A. Cossé
  • Robert J. Bartelt
  • Bruce W. Zilkowski
  • Daniel W. Bean
  • Earl R. Andress
Article

Abstract

Biological activity and chemistry of host plant volatiles were investigated for Diorhabda elongata, Brullé (Coleoptera: Chrysomelidae), a biological control agent for the invasive tree, saltcedar (Tamarix spp., Tamaricaceae). Gas chromatographic–electroantennographic detection (GC-EAD) analysis of volatiles collected from adult D. elongata feeding on saltcedar foliage or from saltcedar foliage alone showed 15 antennally active compounds. These compounds were more abundant in collections from beetle-infested foliage. Antennally active compounds were identified by GC–mass spectrometry (MS) and confirmed with authentic standards. The emissions of the most abundant GC-EAD-active compounds, green leaf volatiles (GLV), were quantitated by GC-MS. A blend of four GLV compounds, mimicking the natural blend ratio, was highly attractive to male and female D. elongata in the field, and a combination of GLV and male-produced aggregation pheromone attracted significantly greater numbers of D. elongata than did either bait alone. A preliminary experiment with a blend of seven additional GC-EAD-active saltcedar volatiles did not show any behavioral activity. The combination of the pheromone and the green leaf odor blend could be a useful attractant in detecting the presence of the biocontrol agent, D. elongata, in stands of saltcedar newly colonized by the beetle.

Keywords

Biological control Chrysomelidae Coleoptera Diorhabda elongata Electrophysiology Field evaluation Green leaf volatiles Host-odor attractants Saltcedar Tamarix ramosissima 

References

  1. Andersen, J. F. and Metcalf, R. L. 1986. Identification of a volatile attractant for Diabrotica and Acalymma species from the blossoms of Cucurbita maxima Duchesne. J. Chem. Ecol. 12:687–699.CrossRefGoogle Scholar
  2. Bartelt, R. J. 1999. Sap beetles, pp. 69–89, in J. Hardie and A. K. Minks (eds.). Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants. CABI Publishing, Wallingford.Google Scholar
  3. Bartelt, R. J. and Zilkowski, B. W. 1999. Nonequilibrium quantitation of volatiles in air streams by solid-phase microextraction. Anal. Chem. 71:92–101.CrossRefGoogle Scholar
  4. Borden, J. H. 1985. Aggregation pheromones, pp. 257–285, in G. A. Kerkut and L. I. Gilbert (eds.). Comprehensive Insect Physiology and Pharmacology, Vol. 9. Pergamon Press, Oxford.Google Scholar
  5. Cossé, A. A. and Bartelt, R. J. 2000. Male-produced aggregation pheromone of Colopterus truncatus: structure, electrophysiological and behavioral activity. J. Chem. Ecol. 26:1735–1748.CrossRefGoogle Scholar
  6. Cossé, A. A., Bartelt, R. J., and Zilkowski, B. W. 2002. Identification and electrophysiological activity of a novel hydroxy ketone emitted by male cereal leaf beetle. J. Nat. Prod. 65:1156–1160.PubMedCrossRefGoogle Scholar
  7. Cossé, A. A., Bartelt, R. J., Zilkowski, B. W., Bean, D. W., and Petroski, R. J. 2005. The aggregation pheromone of Diorhabda elongata, a biological control agent of saltcedar (Tamarix spp.): identification of two behaviorally active components. J. Chem. Ecol. 31:657–670.PubMedCrossRefGoogle Scholar
  8. DeLoach, C. J., Lewis, P. A., Carruthers, R. I., Herr, J. C., Tracy, J. L., and Johnson, J. 2003. Host specificity of a leaf beetle, Diorhabda elongata (Coleoptera: Chrysomelidae) from Asia, for biological control of saltcedars (Tamarix: Tamaricaceae) in the western United States. Biol. Control 27:117–147.CrossRefGoogle Scholar
  9. DeLoach, C. J., Carruthers, R., Dudley, T., Eberts, D., Kazmer, D., Knutson, A., Bean, D., Knight, J., Lewis, P., Tracy, J., Herr, J., Abbot, G., Prestwich, S., Adams, G., Mityaev, I., Jashenko, R., Li, B., Sobhian, R., Kirk, A., Robbins, T., and Delfosse, E. 2004. First results for control of saltcedar (Tamarix spp.) in the open field in the western United States. Eleventh International Symposium on Biological Control of Weeds, Canberra, Australia.Google Scholar
  10. Dicke, M. and van Loon, J. A. 2000. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exp. Appl. 97:237–249.CrossRefGoogle Scholar
  11. Dicke, M. and Vet, L. E. M. 1999. Plant–carnivore interactions: evolutionary and ecological consequences for plant, herbivore, and carnivore, pp. 483–520, in H. Olff, V. K. Brown, and R. H. Drent (eds.). Herbivores: Between Plants and Predators. Blackwell Science, Oxford.Google Scholar
  12. Dicke, M., Takabayashi, J., Posthumus, M. A., Schütte, C., and Krips, O. E. 1998. Plant–phytoseiid interactions mediated by herbivore-induced plant volatiles: variation in production of cues and in responses of predatory mites. Exp. Appl. Acarol. 22:311–333.CrossRefGoogle Scholar
  13. Dickens, J. C. 1999. Predator–prey interactions: olfactory adaptations of generalist and specialist predators. Agric. For. Entomol. 1:47–54.CrossRefGoogle Scholar
  14. Dickens, J. C. 2000. Orientation of Colorado potato beetle to natural and synthetic blends of volatiles emitted by potato plants. Agric. For. Entomol. 2:167–172.CrossRefGoogle Scholar
  15. Dickens, J. C. 2006. Plant volatiles moderate response to aggregation pheromone in Colorado potato beetle. J. Appl. Entomol. 130:26–31.CrossRefGoogle Scholar
  16. Dickens, J. C., Jang, E. B., Light, D. M., and Alford, A. R. 1990. Enhancement of insect pheromone response by green leaf volatiles. Naturwissenschaften 77:29–31.CrossRefGoogle Scholar
  17. Ephrussi, B. and Beadle, G. W. 1936. A technique of transplantation for Drosophila. Am. Nat. 70:218–225.CrossRefGoogle Scholar
  18. Friedman, J. M., Auble, G. T., Shafroth, P. B., Scott, M. L., Merigliano, M. F., Freehling, M. D., and Griffin, E. R. 2005. Dominance of non-native riparian trees in western USA. Biol. Invasions 7:747–751.CrossRefGoogle Scholar
  19. Lampman, R. L., Metcalf, R. L., and Andersen, J. F. 1987. Semiochemical attractants of Diabrotica undecimpunctata howardi Barber, southern corn rootworm, and Diabrotica virgifera virgifera LeConte, the western corn rootworm (Coleoptera: Chrysomelidae). J. Chem. Ecol. 13:959–975.CrossRefGoogle Scholar
  20. Lewis, P. A., DeLoach, C. J., Knutson, A. E., and Tracy, J. L. 2003. Biology of Diorhabda elongata (Coleoptera: Chrysomelidae), an Asian leaf beetle for biological control of saltcedars (Tamarix spp.) in the United States. Biol. Control 27:101–116.CrossRefGoogle Scholar
  21. Metcalf, R. L. and Metcalf, E. R. 1992. Plant Kairomones in Insect Ecology and Control. Chapman and Hall, New York, NY.Google Scholar
  22. Petroski, R. J. 2003. Straightforward preparation of (2E,4Z)-2,4-heptadien-1-ol and (2E,4Z)-2,4-heptadienal. Synth. Commun. 33:3233–3241.CrossRefGoogle Scholar
  23. Rao, S., Cossé, A. A., Zilkowski, B. W., and Bartelt, R. J. 2003. Aggregation pheromone of the cereal leaf beetle: field evaluation and emission from males in the laboratory. J. Chem. Ecol. 29:2165–2175.PubMedCrossRefGoogle Scholar
  24. Reinecke, A., Ruther, J., and Hilker, M. 2005. Electrophysiological and behavioral responses of Melolontha melolontha to saturated and unsaturated aliphatic alcohols. Entomol. Exp. Appl. 115:33–40.CrossRefGoogle Scholar
  25. Ruther, J. and Mayer, C. J. 2005. Response of garden chafer, Phyllopertha horticola, to plant volatiles: from screening to application. Entomol. Exp. Appl. 115:51–59.CrossRefGoogle Scholar
  26. Shafroth, P. B., Cleverly, J. R., Dudley, T. L., Taylor, J. P., Van Riper, C., Weeks, E. P., and Stuart, J. N. 2005. Control of Tamarix in the western United States: implications for water salvage, wildlife use, and riparian restoration. Environ. Manage. 35:231–246.PubMedCrossRefGoogle Scholar
  27. Soroka, J. J., Bartelt, R. J., Zilkowski, B. W., and Cossé, A. A. 2005. Responses of flea beetle Phyllotreta cruciferae to synthetic aggregation pheromone components and host plant volatiles in field trials. J. Chem. Ecol. 31:1829–1843.PubMedCrossRefGoogle Scholar
  28. TÓth, M., Csonka, E., Bartelt, R. J., Cossé, A. A., Zilkowski, B. W., Muto, S., and Mori, K. 2005. Pheromonal activity of compounds identified from male Phyllotreta cruciferae: field tests of racemic mixtures, pure enantiomers, and combinations with allyl isothiocyanate. J. Chem. Ecol. 31:2705–2720.PubMedCrossRefGoogle Scholar
  29. Visser, J. H. 1986. Host odor perception in phytophagous insects. Annu. Rev. Entomol. 31:121–144.CrossRefGoogle Scholar
  30. Visser, J. H. and A, D. A. 1978. General green leaf volatiles in the olfactory orientation of Colorado beetle, Leptinotarsa decemlineata. Entomol. Exp. Appl. 24:738–749.CrossRefGoogle Scholar
  31. Wiley Spectral Library. 1995. 6th edition, CD-ROM. John Wiley and Sons, New York, NY.Google Scholar
  32. Zavaleta, E. 2000. The economic value of controlling an invasive shrub. Ambio 29:462–467.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Allard A. Cossé
    • 1
  • Robert J. Bartelt
    • 1
  • Bruce W. Zilkowski
    • 1
  • Daniel W. Bean
    • 2
  • Earl R. Andress
    • 3
  1. 1.Crop Bioprotection Research Unit, National Center for Agricultural Utilization ResearchUSDA Agricultural Research ServicePeoriaUSA
  2. 2.Department of Vegetable Crops, 133 Asmundson HallUniversity of California-DavisDavisUSA
  3. 3.USDA APHISBrawleyUSA

Personalised recommendations