Advertisement

Journal of Chemical Ecology

, Volume 32, Issue 12, pp 2569–2583 | Cite as

Impact of Sunflower (Helianthus annuus L.) Extracts Upon Reserve Mobilization and Energy Metabolism in Germinating Mustard (Sinapis alba L.) Seeds

  • Ewa Kupidłowska
  • Agnieszka Gniazdowska
  • Joanna Stępień
  • Francoise Corbineau
  • Dominique Vinel
  • Andrzej Skoczowski
  • Anna Janeczko
  • Renata BogatekEmail author
Article

Abstract

One commonly observed effect of phytotoxic compounds is the inhibition or delay of germination of sensitive seeds. Mustard (Sinapis alba L.) seeds were incubated with aqueous extracts of sunflower (Helianthus annuus L.) leaves. Although sunflower phytotoxins did not influence seed viability, extracts completely inhibited seed germination. Inhibition of germination was associated with alterations in reserve mobilization and generation of energy in the catabolic phase of germination. Degradation of lipids was suppressed by sunflower foliar extracts resulting in insufficient carbohydrate supply. The lack of respiratory substrates and decrease in energy (ATP) generation resulted in suppression of the anabolic phase of seed germination and ultimately growth inhibition.

Keywords

ATP Heat production ICL activity Mustard Oil/protein bodies Oxygen uptake Seed germination Sunflower phytotoxicity 

References

  1. Abrahim, D., Braquini, W. L., Kelmer-Bracht, A. M., and Ishii-Iwamoto, E. L. 2000. Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J. Chem. Ecol. 26:611–624.CrossRefGoogle Scholar
  2. Azania, A. A. P. M., Azania, C. A. M., Alives, P. L. C. A., Palaniraj, R., Kadian, H. S., Sati, S. C., Rawat, L. S., Dahiya, D. S., and Narwal, S. 2003. Allelopathic plants 7. Sunflower (Helianthus annuus L.). Allelopathy J. 11:1–20.Google Scholar
  3. Baleroni, C. R. S., Ferrarese, M. L. L., Souza, N. E., and Ferrarese-Filho, O. 2000. Lipid accumulation during canola seed germination in response to cinnamic acid derivatives. Biol. Plant. 43:313–316.CrossRefGoogle Scholar
  4. Batish, D. R., Tung, P., Sing, H. P., and Kohli, R. K. 2002. Phytotoxicity of sunflower residues against some summer crops. J. Agron. Crop Sci. 188:19–24.CrossRefGoogle Scholar
  5. Bethke, P. C., Swanson, S. J., Hillmer, S., and Jones, R. L. 1998. From storage compartment to lytic organelle: The metamorphosis of the aleurone protein storage vacuole. Ann. Bot. 82:399–412.CrossRefGoogle Scholar
  6. Bewley, J. D. and Black, M. 1994. Seeds. Physiology of Development and Germination. Plenum Press, New York.Google Scholar
  7. Bielawski, W., Dojczew, D., Kączkowski, J., and Kolbuszewska-Podres, W. 1994. Enzymes of protein breakdown in germinating Triticale grains resistant and susceptible to pre-harvest sprouting. Acta Physiol. Plant. 16:19–26.Google Scholar
  8. Bogatek, R., ZARSKA-MACIEJEWSKA, B., Sińska, I., and LEWAK, ST. 1989. The embryonic axis controls lipid catabolism in cotyledons of apple seeds during germination. Physiol. Plant. 76:557–562.CrossRefGoogle Scholar
  9. Bogatek, R., Oracz, K., and Gniazdowska, A. 2005. Ethylene and ABA production in germinating seeds during allelopathy stress, pp. 292–296, in J.D.I. Harper, A. AN, H. WU, and J. H. Kent (eds.). Proceedings of the 4th Word Congress on Allelopathy. Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW, Australia. International Allelopathy Society.Google Scholar
  10. Bogatek, R., Gniazdowska, A., Zakrzewska, W., Oracz, K., and Gawroński, S. W. 2006. Allelopathic effect of sunflower extracts on mustard seed germination and seedling growth. Biol. Plant. 50:156–158.CrossRefGoogle Scholar
  11. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72:248–254.PubMedCrossRefGoogle Scholar
  12. Cosgrove, D. J. 1997. Relaxation in a high-stress environment: The molecular bases of extensible cell walls and cell enlargement. Plant Cell 9:1031–1041.PubMedCrossRefGoogle Scholar
  13. Cruz-Ortega, R., Anaya, A. L., and Ramos, L. 1988. Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon. J. Chem. Ecol. 14:71–86.CrossRefGoogle Scholar
  14. Edelstein, M., Bradford, K. J., and Burger, D. W. 2001. Metabolic heat and CO2 production rates during germination of melon (Cucumis melo L.) seeds measured by microcalorimetry. Seed Sci. Res. 11:265–272.Google Scholar
  15. Hosokawa, T., Okamoto, T., and Minamikawa, T. 1999. Characterisation of serine endopeptidases in cotyledons of germinated Vigna mungo seeds. J. Plant Res. 112:217–221.CrossRefGoogle Scholar
  16. Huang, A. H. C. 1992. Oil bodies and oleosins in seeds. Annu. Rev. Plant Phys. 43:177–200.CrossRefGoogle Scholar
  17. Inderjit and Callaway, R. M. 2003. Experimental designs for the study of allelopathy. Plant Soil 256:1–11.CrossRefGoogle Scholar
  18. Inderjit and Duke, S. O. 2003. Ecophysiological aspect of allelopathy. Planta 217:529–539.PubMedCrossRefGoogle Scholar
  19. Irons, S. and Burnside, O. 1982. Competitive and allelopathic effect of sunflower (Helianthus annuus). Weed Sci. 30:327–377.Google Scholar
  20. Karnovsky, M. J. 1965. A formaldehyde–glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 25A:137–138.Google Scholar
  21. Lacey, D. J. and Hills, M. J. 1996. Heterogeneity of the endoplasmic reticulum with respect to lipid synthesis in developing seeds of Brassica napus L. Planta 199:545–551.CrossRefGoogle Scholar
  22. Leather, G. R. 1987. Weed control using allelopathic sunflowers and herbicide. Plant Soil 98:17–231.CrossRefGoogle Scholar
  23. Lewitt, J., Lovett, J. V., and Garlick, P. R. 1984. Datura stramonium allelochemicals: Longevity in soil, and ultrastructural effects on root tip cells of Helianthus annuus L. New Phytol. 97:213–218.CrossRefGoogle Scholar
  24. Lin, Y. H. and Huang, A. H. C. 1983. Lipase and lipid bodies of rape and mustard seeds. Arch. Biochem. Biophys. 225:360–369.PubMedCrossRefGoogle Scholar
  25. Macias, F. A., Varela, R. M., Torres, A., and Molinillo, J. M. G. 2000. Potential allelopathic activity of natural plant heliannanes: A proposal of absolute configuration and nomenclature. J. Chem. Ecol. 26:2173–2186.CrossRefGoogle Scholar
  26. Macias, F. A., Molinillo, J. M. G., Galindo, J. C. G., Varela, R. M., Simonet, A. M., and Castellano, D. 2001. The use of allelopathic studies in the search for natural herbicides. J. Crop Prod. 4:237–255.CrossRefGoogle Scholar
  27. Macias, F. A., Varela, R. M., Torres, A., Galindo, J. L. G., and Molinillo, J. M. G. 2002. Allelochemicals from sunflowers: Chemistry, bioactivity and applications, pp. 73–87, in Inderjit and A.U. Mallik (eds.). Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems. Birkhauser Verlag, Basel.Google Scholar
  28. Maffei, M., Bertea, C. M., Garneri, F., and Scanneri, S. 1999. Effect of benzoic acid hydroxy- and methoxy-ring substituents during cucumber (Cucumis sativus L.) germination. I. Isocitrate lyase and catalase activity. Plant Sci. 141:139–147.CrossRefGoogle Scholar
  29. Murphy, D. J., Cummins, I., and Ryan, J. 1989. Immunocytochemical and biochemical study of the biosynthesis and mobilisation of the major seed storage proteins of Brassica napus. Plant Physiol. Biochem. 27:647–657.Google Scholar
  30. Olempska-Beer, Z. and Bautz-Freeze, E. 1984. Optimal extraction conditions for high-performance liquid chromatography determination of nucleotides in yeast. Anal. Biochem. 140:236–224.Google Scholar
  31. Peňuelas, J., Ribas-Carbo, M., and Giles, L. 1996. Effect of allelochemicals on plant respiration and oxygen isotope fractionation by alternative oxidase. J. Chem. Ecol. 22:801–805.CrossRefGoogle Scholar
  32. Reigosa, M. J., Sanchez-Moreiras, A., and Gonzales, L. 1999. Ecophysiological approach in allelopathy. Crit. Rev. Plant Sci. 18:577–608.CrossRefGoogle Scholar
  33. Reynolds, E. S. 1963. The use of lead citrate at high pH as an electron opaque stain for electron microscopy. J. Cell Biol. 17:208–213.PubMedCrossRefGoogle Scholar
  34. Rice, E. L. 1984. Allelopathy. Academic Press, Orlando. 422 pp.Google Scholar
  35. Rosnitschek, I. and Theimer, T. T. 1980. Properties of membrane-bound triglyceride lipase of rapeseed (Brassica napus L.) cotyledons. Planta 148:193–198.CrossRefGoogle Scholar
  36. Saglio, P. H. M., Daniels, M. J., and Pradet, A. 1979. ATP and energy charge as criteria of growth and metabolic activity of mullicutes: Application to Spiroplasma citri. J. Gen. Microbiol. 110:13–20.Google Scholar
  37. Schlereth, A., Standhardt, D., Mock, H-P., and Müntz, K. 2001. Stored cysteine proteinases start globulin mobilization in protein bodies of embryonic axes and cotyledons during vetch (Vicia sativa L.) seed germination. Planta 212:718–727.PubMedCrossRefGoogle Scholar
  38. Schon, M. K. and Einhellig, F. 1982. Allelopathic effects of cultivated sunflower on grain sorghum. Bot. Gaz. 143:505–510.CrossRefGoogle Scholar
  39. Smith, N. B., Criddle, R. S., and Hansen, L. D. 2000. Plant growth, respiration and environmental stress. J. Plant Biol. 27:89–97.Google Scholar
  40. Smith, B. N., Harris, L. C., McCarlie, V. M., Stradling, D. L., Thygerson, T., Walker, J., Criddle, R. S., and Hansen, L. D. 2001. Unit 1. Time, plant growth, respiration, and temperature, pp 1–11, in M Pessarakli (ed.) Handbook of Plant and Crop Physiology. Marcel Dekker, New York.Google Scholar
  41. Spoelstra, P., Joosen, R. V. L., Van der Plas, L. H. W., and Hilhorst, H. W. M. 2002. The distribution of ATP within tomato (Lycopersicon esculentum Mill.) embryos correlates with germination whereas total ATP concentration does not. Seed Sci. Res. 12:231–238.CrossRefGoogle Scholar
  42. Wanner, G. and Theimer, R. R. 1978. Membranous appendices of spherosomes. Possible role in fat utilization in germinating oil seeds. Planta 140:163–169.CrossRefGoogle Scholar
  43. Werker, E. and Vaughan, J. G. 1974. Anatomical and ultrastructural changes in aleurone and myrosin cells of Sinapis alba during germination. Planta 116:243–255.CrossRefGoogle Scholar
  44. Weston, L. A. and Duke, S. O. 2003. Weed and crop allelopathy. Crit. Rev. Plant Sci. 22:367–389.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Ewa Kupidłowska
    • 1
  • Agnieszka Gniazdowska
    • 2
  • Joanna Stępień
    • 2
  • Francoise Corbineau
    • 3
  • Dominique Vinel
    • 3
  • Andrzej Skoczowski
    • 4
  • Anna Janeczko
    • 4
  • Renata Bogatek
    • 2
    Email author
  1. 1.Department of Plant Anatomy and Cytology, Institute of Experimental Plant BiologyWarsaw UniversityWarsawPoland
  2. 2.Department of Plant PhysiologyWarsaw Agricultural UniversityWarsawPoland
  3. 3.Physiologie Végétale Appliquée, Université Pierre et Marie CurieParis Cédex 05France
  4. 4.Franciszek Górski Department of Plant PhysiologyPolish Academy of ScienceKrakowPoland

Personalised recommendations