Journal of Chemical Ecology

, Volume 32, Issue 11, pp 2475–2487 | Cite as

Electrophysiological Responses of the Lepidopterous Stemborers Chilo partellus and Busseola fusca to Volatiles from Wild and Cultivated Host Plants

  • M. A. Birkett
  • K. Chamberlain
  • Z. R. Khan
  • J. A. Pickett
  • T. Toshova
  • L. J. Wadhams
  • C. M. Woodcock
Article

Abstract

The stemborers Chilo partellus and Busseola fusca are major pests of subsistence cereal farming in Africa. Volatiles released by two cultivated hosts, sorghum and maize (Sorghum bicolor and Zea mays), and two wild grass hosts, Pennisetum purpureum and Hyparrhenia tamba, were collected by air entrainment. Electrophysiologically active components in these samples were detected by coupled gas chromatography-electroantennography (GC-EAG), and the active peaks identified by gas chromatography-mass spectrometry. A total of 41 compounds were identified from the four plant species, all of which, as well as two unidentified compounds, elicited an electrophysiological response from one or both of the stemborers. The compounds included a number of green leaf volatiles and other aliphatic aldehydes, ketones, and esters, mono- and sesquiterpenoids, and some aromatic compounds. EAG studies with authentic samples, conducted at two discriminating doses for all compounds, and dose–response curves for 14 of the most highly EAG-active compounds, showed significant differences in relative responses between species. The compounds that elicited large responses in both species of moths included linalool, acetophenone, and 4-allylanisole, while a number of compounds such as the aliphatic aldehydes octanal, nonanal, and decanal elicited a large response in B. fusca, but a significantly smaller response in C. partellus. Furthermore, the wild hosts produced higher levels of physiologically active compounds compared with either of the cultivated hosts. These differences are discussed in relation to the differential attraction/oviposition of the two stemborers observed in the field and, particularly for eastern African small-scale farming systems, in the context of using a push–pull strategy for their control.

Keywords

Stemborer Maize Sorghum Host location Electrophysiology Volatiles GC-MS Push–pull 

References

  1. Agelopoulos, N. G., Hooper, A. M., Maniar, S. P., Pickett, J. A., and Wadhams, L. J. 1999. A novel approach for isolation of volatile chemicals released by individual leaves of a plant in situ. J. Chem. Ecol. 25:1411–1425.CrossRefGoogle Scholar
  2. Bernasconi, M. L., Turlings, T. C. J., Ambrosetti, L., Bassetti, P., and Dorn, S. 1998. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol. Exp. Appl. 87:133–142.CrossRefGoogle Scholar
  3. Bernays, E. A. and Chapman, R. F. 1994. Host Plant Selection by Phytophagous Insects. Chapman and Hall.Google Scholar
  4. Birkett, M. A., Chamberlain, K., Guerrieri, E., Pickett, J. A., Wadhams, L. J., and Yasuda, T. 2003. Volatiles from whitefly-infested plants elicit a host-locating response in the parasitoid, Encarsia formosa. J. Chem. Ecol. 29:1589–1600.PubMedCrossRefGoogle Scholar
  5. Bruce, T. J. A., Wadhams, L. J., and Woodcock, C. M. 2005. Insect host location: A volatile situation. Trends Plant Sci. 10:269–274.PubMedCrossRefGoogle Scholar
  6. Chamberlain, K., Khan, Z. R., Pickett, J. A., Toshova, T., and Wadhams, L. J. 2006. Diel periodicity in the production of green leaf volatiles by wild and cultivated host plants of stemborer moths Busseola fusca and Chilo partellus. J. Chem. Ecol. 32(3):565–577.PubMedCrossRefGoogle Scholar
  7. Chou, T., Tso, H., and Chang, L. 1984. Stereoselective one-step syntheses of trans-ocimene and -farnesene. J. Chem. Soc. Chem. Comm. 1323.Google Scholar
  8. Degen, T., Dillmann, C., Marion-Poll, F., and Turlings, T. C. J. 2004. High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol. 135:1928–1938.PubMedCrossRefGoogle Scholar
  9. Dethier, V. G. 1982. Mechanism of host-plant recognition. Entomol. Exp. Appl. 31:49–56.Google Scholar
  10. Gaoni, Y. 1977. Lithium aluminium hydride promoted extrusion of SO2 from sulfolenes and sulfolene-adducts. 1,3-Dienes, 3-chloro- and 3,3-dichloro-1,4-dienes and skipped polyenes. Tetrahedron Lett. 11:947–950.CrossRefGoogle Scholar
  11. Gouinguené, S., Degen, T., and Turlings, T. C. J. 2001. Variability in herbivore-induced odour emissions among corn cultivars and their wild ancestors (teosinte). Chemoecology 11:9–16.CrossRefGoogle Scholar
  12. Kang, S. K. and Kim, S. G. 1986. A practical synthesis of (E)-β-farnesene, the alarm pheromone of aphids. Bull. Korean Chem. Soc. 7:157–159.Google Scholar
  13. Khan, Z. R. and Pickett, J. A. 2004. The ‘push–pull’ strategy for stemborer management: A case study in exploiting biodiversity and chemical ecology, pp. 155–164, in G. M. Gurr, S. D. Wratten, and M. A. Altieri (eds.). Ecological Engineering for Pest Management. CABI, Oxford, UK.Google Scholar
  14. Khan, Z. R., Chiliswa, P., Ampong-Nyarko, K., Smart, L. E., Polaszek, A., Wandera, J., and Mulaa, M. A. 1997a. Utilisation of wild gramineous plants for management of cereal stemborers in Africa. Insect Sci. Appl. 17:143–150.Google Scholar
  15. Khan, Z. R., Ampong-Nyarko, K., Chiliswa, P., Hassanali, A., Kimani, S., Lwande, W., Overholt, W. A., Pickett, J. A., Smart, L. E., Wadhams, L. J., and Woodcock, C. M. 1997b. Intercropping increases parasitism of pests. Nature 388:631–632.CrossRefGoogle Scholar
  16. Khan, Z. R., Pickett, J. A., Van Den Berg, J., Wadhams, L. J., and Woodcock, C. M. 2000. Exploiting chemical ecology and species diversity: Stem borer and Striga control for maize and sorghum in Africa. Pest Manag. Sci. 56:957–962.CrossRefGoogle Scholar
  17. Khan, Z. R., Pickett, J. A., Wadhams, L., and Muyekho, F. 2001. Habitat management strategies for the control of cereal stemborers and Striga in maize in Kenya. Insect Sci. Appl. 21:375–380.Google Scholar
  18. Khan, Z. R., Mohamed, H. M., Overholt, W. A., and Elizabeth, D. K. 2004. Behaviour and biology of Chilo partellus (Lepidoptera: Pyralidae) on maize and wild gramineous plants. Int. J. Trop. Insect Sci. 24:287–297.CrossRefGoogle Scholar
  19. Khan, Z. R., Midega, C. A. O., Hutter, N. J., Wilkins, R. M., and Wadhams, L. J. 2006. Assessment of the potential of Napier grass (Pennisetum purpureum) varieties as trap plants for management of Chilo partellus. Entomol. Exp. Appl. 119:15–22.CrossRefGoogle Scholar
  20. Loughrin, J. H., Manukian, A., Heath, R. R., Turlings, T. C. J., and Tumlinson, J. H. 1994. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc. Natl. Acad. Sci. USA 91:11836–11840.PubMedCrossRefGoogle Scholar
  21. Maddrell, S. H. 1969. Secretion by Malpighian tubules of Rhodnius. Movements of ions and water. J. Exp. Bot. 51:71–78.Google Scholar
  22. Maurer, B., Hauser, A., and Froidevaux, J. C. 1986. (E)-4,8-Dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, two unusual hydrocarbons from cardamon oil. Tetrahedron Lett. 27:2111–2112.CrossRefGoogle Scholar
  23. Ndemah, R., Gounou, S., and Schulthess, F. 2002. The role of wild grasses in the management of lepidopterous stem-borers on maize in the humid tropics of Western Africa. Bull. Entomol. Res. 92:507–519.CrossRefPubMedGoogle Scholar
  24. Ngi-Song, A. J., Njagi, P. G. N., Torto, B., and Overholt, W. A. 2000. Identification of behaviourally active components of maize volatiles for the stemborer parasitoid Cotesia flavipes Cameron (Hymenoptera: Braconidae). Insect Sci. Appl. 20(3):181–189.Google Scholar
  25. Päts, P. 1991. Activity of Chilo partellus (Lepidoptera: Pyralidae): Eclosion, mating and oviposition time. Bull. Entomol. Res. 81:93–96.CrossRefGoogle Scholar
  26. Pickett, J. A. 1990. Gas chromatography-mass spectrometry (GC-MS) in insect pheromone identification: Three extreme case histories, pp. 299–309, in A.R. McCaffery and I.D. Wilson (eds.). Chromatography and Isolation of Insect Hormones and Pheromones. Plenum, New York.Google Scholar
  27. Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1998. Insect supersense: Mate and host location by insects as model systems for exploiting olfactory interactions. The Biochemist 20:8–13.Google Scholar
  28. Rebe, M., Van Den Berg, J., and McGeoch, M. A. 2004. Colonisation of cultivated and indigenous graminaceous host plants by Busseola fusca (Fuller) (Lepidoptera: Noctuidae) and Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) under field conditions. Afr. Entomol. 12:187–199.Google Scholar
  29. Takabayashi, J., Takanashi, S. Dicke, M., and Posthumus, M. A. 1995. Developmental stage of herbivore Pseudeletia separata affects production of herbivore induced synomone by corn plants. J. Chem. Ecol. 21:273–287.CrossRefGoogle Scholar
  30. Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odours by host-seeking parasitic wasps. Science (Washington) 250:1251–1253.CrossRefGoogle Scholar
  31. Turlings, T. C. J., Tumlinson, J. H., Heath, R. R., Proveaux, A. T., and Doolittle, R. E. 1991. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J. Chem. Ecol. 17:2235–2251.CrossRefGoogle Scholar
  32. Turlings, T. C. J., Loughrin, J. H., Mccall, P. J., Röse, U. S. R., Lewis, W. J., and Tumlinson, J. H. 1995. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc. Natl. Acad. Sci. USA 92:4169–4174.PubMedCrossRefGoogle Scholar
  33. Turlings, T. C. J., Bernasconi, M. L., Bertossa, R., Bigler, F., Caloz, G., and Dorn, S. 1998a. The induction of volatile emissions in maize by three herbivore species with different feeding habits: possible consequences for their natural enemies. Biol. Control 11:122–129.CrossRefGoogle Scholar
  34. Turlings, T. C. J., Lengwiler, U. B., Bernasconi, M. L., and Wechsler, D. 1998b. Timing of induced volatile emissions in corn seedlings. Planta 207:146–152.CrossRefGoogle Scholar
  35. Visser, J. H. 1986. Host odor perception in phytophagous insects. Annu. Rev. Entomol. 31:121–144.CrossRefGoogle Scholar
  36. Visser, J. H. 1988. Host-plant finding by insects—orientation, sensory input and search patterns. J. Insect Physiol. 34:259–268.CrossRefGoogle Scholar
  37. Wadhams, L. J. 1990. The use of coupled gas chromatography-electrophysiological techniques in the identification of insect pheromones, pp. 289–298, in A. R. McCaffery and I. D. Wilson (eds.) Chromatography and Isolation of Insect Hormones and Pheromones. Plenum, New York.Google Scholar
  38. Wadhams, L. J., Angst, M. E., and Blight, M. M. 1982. Responses of the olfactory receptors of Scolytus scolytus (F.) (Coleoptera: Scolytidae) to the stereoisomers of 4-methyl-3-heptanol. J. Chem. Ecol. 8:477–492.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. A. Birkett
    • 1
  • K. Chamberlain
    • 1
  • Z. R. Khan
    • 2
  • J. A. Pickett
    • 1
  • T. Toshova
    • 3
  • L. J. Wadhams
    • 1
  • C. M. Woodcock
    • 1
  1. 1.Rothamsted ResearchHarpendenUK
  2. 2.International Centre of Insect Physiology and EcologyNairobiKenya
  3. 3.Institute of Zoology, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations