Journal of Chemical Ecology

, Volume 32, Issue 11, pp 2417–2428 | Cite as

Metabolomic Differentiation of Brassica rapa Following Herbivory by Different Insect Instars using Two-Dimensional Nuclear Magnetic Resonance Spectroscopy

  • Heru Tri Widarto
  • Ed Van Der Meijden
  • Alfons W. M. Lefeber
  • Cornelis Erkelens
  • Hye Kyong Kim
  • Young Hae Choi
  • Robert Verpoorte


The metabolic alterations of Brassica rapa (L.) leaves attacked by larvae of the specialist Plutella xylostella L. (Lepidoptera: Yponomeutidae) and the generalist Spodoptera exigua Hubner (Lepidoptera: Noctuidae) were investigated with nuclear magnetic resonance (NMR) spectroscopy, followed by a multivariate data analysis. The principal component analysis (PCA) of 1H NMR spectra showed that metabolic changes in B. rapa leaves induced by the 2nd and the 4th instars were different from each other. However, the congestion of the one-dimensional 1H NMR spectrum made it difficult to identify discriminating metabolites. To overcome the spectral complexity, several two-dimensional NMR techniques were applied. Of those evaluated, J-resolved spectroscopy, which affords an additional coupling constant, provided a wide range of structure information on differentiating the metabolites. Based on the J-resolved spectra combined with PCA, the major signals contributing to the discrimination were alanine, threonine, glucose, sucrose, feruloyl malate, sinapoyl malate, and gluconapin.


Herbivory Brassica rapa Plutella xylostella Spodoptera exigua Metabolic profiling Two-dimensional nuclear magnetic resonance spectroscopy Principal component analysis 



Financial support from the Netherlands Education Centre (STUNED Scholarship 2003) for Heru Tri Widarto is highly acknowledged. We also acknowledge Henk Nell for rearing S. exigua larvae.


  1. Baldwin, I. T. and Preston, C. A. 1999. The eco-physiological complexity of plant responses to insect herbivores. Planta 208:137–145.CrossRefGoogle Scholar
  2. Baldwin, I. T., Halitsche, R., Kessler, A., and Schittko, U. 2001. Merging molecular and ecological approaches in plant–insect interactions. Curr. Opin. Plant Biol. 4:351–358.PubMedCrossRefGoogle Scholar
  3. Choi, Y. H., Kim, H. K., Hazenkamp, A., Erkelens, C., Lefeber, A. W. M., and Verpoorte, R. 2004a. Metabolomic differentiation of Cannabis sativa cultivars using 1H NMR and principal component analysis. J. Nat. Prod. 67:953–957.CrossRefGoogle Scholar
  4. Choi, Y. H., Tapias, E. C., Kim, H. K., Lefeber, A. W., Erkelens, C., Verhoeven, J. T., Brzin, J., Zel, J., and Verpoorte, R. 2004b. Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiol. 135:2398–2410.CrossRefGoogle Scholar
  5. Doughty, K. J., Blight, M. M., Bock, C. H., Fieldsend, J. K., and Pickett, J. A. 1996. Release of alkenyl isothiocyanates and other volatiles from Brassica rapa seedlings during infection by Alternaria brassicae. Phytochemistry 43:371–374.CrossRefGoogle Scholar
  6. Daayf, F., Ongena, M., Boulanger, R., El Hadrami, I., and Belanger, R. R. 2000. Induction of phenolic compounds in two cultivars of cucumber by treatment of healthy and powdery mildew-infected plants with extracts of Reynoutria sachalinensis. J. Chem. Ecol. 26:1579–1593.CrossRefGoogle Scholar
  7. Foxall, P. J. D., Parkinson, J. A., Sadler, I. H., Lindon, J. C., and Nicholson, J. K. 1993. Analysis of biological fluids using 600 MHz proton NMR spectroscopy—application of homonuclear 2-dimensional J-resolved spectroscopy to urine and blood plasma for spectral simplification and assignment. J. Pharm. Biomed. 11:21–31.CrossRefGoogle Scholar
  8. Grant, G. G. and Langevin, D. 2002. Oviposition responses of four Choristoneura (Lepidoptera: Tortricidae) species to chemical an physical stimuli associated with host and nonhost foliage. Environ. Entomol. 23:224–456.Google Scholar
  9. Geervliet, J. B. F., Posthumus, M. A., Vet, L. E. M., and Dicke, M. 1997. Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. J. Chem. Ecol. 23:2935–2954.Google Scholar
  10. Gouinguene, S., Degen, T., and Turlings, T. C. J. 2001. Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology 11:9–16.CrossRefGoogle Scholar
  11. Halkier, B. A. and Du, L. 1997. The biosynthesis of glucosinolates. Trends Plant Sci. 2:425–431.CrossRefGoogle Scholar
  12. Liang, Y.-S., Kim, H. K., Lefeber, A. W. M., Erkelens, C., Choi, Y. H., and Verpoorte, R. 2006. Identification of phenylpropanoids in Brassica rapa leaves treated with methyl jasmonate using two-dimensional nuclear magnetic resonance spectroscopy. J. Chromatogr. A 1112:148–155.PubMedCrossRefGoogle Scholar
  13. Maleck, K. and Dietrich, R. A. 1999. Defense on multiple fronts: How do plants cope with diverse enemies? Trends Plant Sci. 4:215–219.PubMedCrossRefGoogle Scholar
  14. Mauricio, R. and Rausher, M. D. 1997. Experimental manipulation of putative selection agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51:1435–1444.CrossRefGoogle Scholar
  15. Nicholson, J. K., Foxall, P. J. D., Spraul, M., Farrant, R. D., and Lindon, J. C. 1995. 750 MHz 1H and 1H–13C NMR spectroscopy of human blood plasma. Anal. Chem. 67:793–811.PubMedCrossRefGoogle Scholar
  16. Nilsson, M., Duarte, I. F., Almeida, C., Delgadillo, I., Goodfellow, B. J., Gil, A. M., and Morris, G. A. 2004. High-resolution NMR and diffusion-ordered spectroscopy of port wine. J. Agric. Food Chem. 52:3736–3743.PubMedCrossRefGoogle Scholar
  17. Peiwu, L., Guangming, L., Wen, Z., Mei, Y., and Jianqiang, Z. 1999. Investigations on dominant glucosinolates in rapeseed germplasm collected in China. Proceedings of the 10th International Rapeseed Congress, Canberra, Australia. The Regional Institute, Ltd., Australia.Google Scholar
  18. Ratzka, A., Vogel, H., Kliebenstein, D. J., Mitchell-Olds, T., and Kroymann, J. 2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. U.S.A. 99:11223–11228.PubMedCrossRefGoogle Scholar
  19. Rostas, M., Bennett, R., and Hilker, M. 2002. Comparative physiological responses in Chinese cabbage induced by herbivory and fungal infection. J. Chem. Ecol. 28:2449–2462.PubMedCrossRefGoogle Scholar
  20. Sharma, B. K. and Singh, U. P. 2003. Ferulic acid may prevent infection of Cicer arietinum by Sclerotium rolfsii. World J. Microb. Biotechnol. 19:123–127.CrossRefGoogle Scholar
  21. Shonle, I. and Bergelson, J. 2000. Evolutionary ecology of the tropane alkaloids of Datura stramonium L. (Solanaceae). Evolution 54:778–788.PubMedCrossRefGoogle Scholar
  22. Stotz, H. U., Kroymann, J., and Mitchell-Olds, T. 1999. Plant–insect interactions. Curr. Opin. Plant Biol. 2:268–272.PubMedCrossRefGoogle Scholar
  23. Stout, J. and Chapple, C. 2004. The phenylpropanoid pathway in Arabidopsis: Lessons learned from mutant in sinapate ester biosynthesis, Ch. 3, pp. 39–67, in J. T. Romeo (ed.). Secondary Metabolism in Model Systems. Elsevier, Amsterdam, The Netherlands.Google Scholar
  24. Stratmann, J. W and Ryan, C. A. 1997. Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors. Proc. Natl. Acad. Sci. U.S.A. 93:11085–11089.CrossRefGoogle Scholar
  25. Sumner, L. W., Mendes, P.,and Dixon, R. A. 2003. Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phtyochemistry 62:817–836.CrossRefGoogle Scholar
  26. Viant, M. R. 2003. Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochem. Biophys. Res. Commun. 310:943–948.PubMedCrossRefGoogle Scholar
  27. Vuorinen, T., Reddy, G. V. P., Nerg, A. M., and Holopainen, J. K. 2004. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO2 concentration. Atmos. Environ. 38:675–682.CrossRefGoogle Scholar
  28. Ward, J. L., Harris, C., Lewis, J., and Beale, M. H. 2003. Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 62:949–957.PubMedCrossRefGoogle Scholar
  29. Zasada, I. A. 2003. Sensitivity of Meloidogyne javanica and Tylenchulus semipenetrans to isothiocyanates in laboratory assays. Phytopathology 93:747–750.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Heru Tri Widarto
    • 1
    • 2
  • Ed Van Der Meijden
    • 3
  • Alfons W. M. Lefeber
    • 4
  • Cornelis Erkelens
    • 4
  • Hye Kyong Kim
    • 1
  • Young Hae Choi
    • 1
  • Robert Verpoorte
    • 1
  1. 1.Division of Pharmacognosy, Section Metabolomics, Institute of BiologyLeiden UniversityLeidenThe Netherlands
  2. 2.Crop Protection Development Center, Directorate General of Crop EstateMinistry of Agriculture, Republic of IndonesiaSumatera UtaraIndonesia
  3. 3.Section Plant Ecology, Institute of BiologyLeiden UniversityLeidenThe Netherlands
  4. 4.Division of NMR, Institute of ChemistryGorlaeus LaboratoriesLeidenThe Netherlands

Personalised recommendations