Journal of Chemical Ecology

, Volume 32, Issue 10, pp 2303–2319 | Cite as

Volatile Emissions from Aesculus hippocastanum Induced by Mining of Larval Stages of Cameraria ohridella Influence Oviposition by Conspecific Females

  • A. Bettina JohneEmail author
  • Bernhard Weissbecker
  • Stefan Schütz


Larval stages of the horse chestnut leafminer Cameraria ohridella can completely destroy the surface of horse chestnut leaves, Aesculus hippocastanum. This study investigated the effect of the degree of leaf browning caused by the insect’s larvae on olfactory detection, aggregation, and oviposition of C. ohridella adults. The influence of A. hippocastanum flower scent on oviposition of the first generation was also evaluated. Utilizing gas chromatography coupled with parallel detection by mass spectrometry and electroantennography (GC-MS/EAD), more than 30 compounds eliciting responses from antennae of C. ohridella were detected. Oviposition and mining by C. ohridella caused significant changes in the profile of leaf volatiles of A. hippocastanum. After oviposition and subsequent mining by early larval stages (L1–L3), substances such as benzaldehyde, 1,8-cineole, benzyl alcohol, 2-phenylethanol, methyl salicylate, (E)-β-caryophyllene, and (E,E)-α-farnesene were emitted in addition to the compounds emitted by uninfested leaves. Insects were able to detect these compounds. The emitted amount of these substances increased with progressive larval development. During late larval stages (L4, L5) and severe loss of green leaf area, (E,E)-2,4-hexadienal, (E/Z)-linalool oxide (furanoid), nonanal, and decanal were also released by leaves. These alterations of the profile of volatiles caused modifications in aggregation of C. ohridella on leaves. In choice tests, leaves in early infestation stages showed no significant effect on aggregation, whereas insects avoided leaves in late infestation stages. Further choice tests with leaves treated with single compounds led to the identification of substances mediating an increase or decrease in oviposition.

Key words

Cameraria ohridella Aesculus hippocastanum Herbivore-induced plant volatiles Semiochemicals Oviposition Headspace analysis Electroantennogram detection 



A.B. Johne was supported by the evangelisches Studienwerk “e. V. Villigst”. We are grateful to Wolfgang Gieße (City of Goettingen), Volker Meng (forest botanical garden of Georg August University), and Martin Levin (Revierförsterei Hainberg) for appropriation of trees, to Roman Kaiser, Givaudan, Switzerland, for the gift of (E,E)-α-farnesene, and to Wilhelm Boland, Max Planck Institute Jena, Germany, for the gift of (E)-4,8-dimethyl-1,3,7-nonatriene. We thank the members of our Institute Miriam Rameckers, Jörg Berger, Kira Duntemann, Reinhold Dankworth, and Ulrike Eisenwiener for their assistance. Moreover, thanks to Stefan Schwab for literature. We also appreciate the useful suggestions of the anonymous reviewers.


  1. Bernays, E. A. and Chapman, R. F. 1994. Host-Plant Selection by Phytophagous Insects. Chapman & Hall. London, New York.Google Scholar
  2. Boland, W., Ney, P., Jaenicke, L., and Gassmann, G. 1984. A “closed-loop-stripping” technique as a versatile tool for metabolic studies of volatiles, pp. 371–380, in P. Schreier (ed.). Analysis of Volatiles. Walter de Gruyter, Berlin.Google Scholar
  3. Bolter, C. J., Dicke, M., Van Loon, J. J. A., Visser, J. H., and Posthumus, M. A. 1997. Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 23:1003–1023.CrossRefGoogle Scholar
  4. De Moraes, C. M., Lewis, W. J., Paré, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivory-infested plants selectively attract parasitoids. Nature 393:570–573.CrossRefGoogle Scholar
  5. De Prins, J., De Prins, W., and De Coninck, E. 2003. The pupal morphology of Cameraria ohridella compared with that of the genus Phyllonorycter (Lep. Gracillariidae). J. Pest Sci. 76:145–150.Google Scholar
  6. Deschka, G. 1994. Die Roßkastanien-Miniermotte: Lebensbild eines blattminierenden Schädlings. Ökol. (Linz) 16:32–36.Google Scholar
  7. Deschka, G. and Dimic, N. 1986. Cameraria ohridella n. sp. aus Mazedonien, Jugoslawien (Lepidoptera, Lithocelletidae). Acta Entomol. Jugosl. 22:11–23.Google Scholar
  8. Dicke, M. 1999. Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol. Exp. Appl. 91:131–142.CrossRefGoogle Scholar
  9. Dicke, M. and Vet, L. E. M. 1999. Plant–carnivore interactions: Evolutionary and ecological consequences for plant, herbivore and carnivore, pp. 483–520, in H. Olff, V. K. Brown, and R. H. Drent (eds.). Herbivores: Between Plants and Predators. Blackwell, Oxford, UK.Google Scholar
  10. Dicke, M., van Beek, T. A., Posthumus, M. A., Dom, N. B., van Bokhoven, H., and de Groot, A. 1990. Isolation and identification of volatile kairomone that affects acarine predator–prey interaction: Involvement of host plant in its production. J. Chem. Ecol. 16:381–396.CrossRefGoogle Scholar
  11. Dicke, M., Van Poecke, R. M. P., and De Boer, J. G. 2003. Inducible indirect defence of plants: From mechanisms to ecological function. Basic Appl. Ecol. 4:27–42.CrossRefGoogle Scholar
  12. Färbert, P., Koch, U. T., Färbert, A., Staten, R. T., and Cardé, R. T. 1997. Pheromone concentration measured with electroantennogram in cotton fields treated for mating disruption of Pectinophora gossypiella (Lepidoptera: Gelechiidae). Environ. Entomol. 26:1105–1116.Google Scholar
  13. Freise, J. F. 2001. Untersuchungen zur Biologie und Ökologie der Rosskastanien-Miniermotte, Cameraria ohridella Desch. & Dim. (Lep., Gracillariidae). PhD dissertation, Technical University of Munich, Germany.Google Scholar
  14. Freise, J. F., Heitland, W., and Tosevski, I. 2002. Parasitism of the horse chestnut leaf miner, Cameraria ohridella Deschka and Dimic (Lep., Gracillariidae), in Serbia and Macedonia. Anz. Schaedlingskd. 75:152–157.CrossRefGoogle Scholar
  15. Gilbert, M. and Grégoire, J. C. 2003. Visual, semi-quantitative assessments allow accurate estimates of leafminer population densities: An example comparing image processing and visual evaluation of damage by the horse chestnut leafminer C. ohridella (Lep. Gracillariidae). J. Appl. Entomol. 127:354–359.CrossRefGoogle Scholar
  16. Grabenweger, G. 2003. Parasitism of different larval stages of Cameraria ohridella. BioControl 48:671–684.CrossRefGoogle Scholar
  17. Grabenweger, G., Avtzis, N., Girardoz, S., Hrasovec, B., Tomov, R., and Kenis, M. 2005. Parasitism of Cameraria ohridella (Lep. Gracillariidae) in natural and artificial horse-chestnut stands in the Balkans. J. Agric. For. Entomol. 7:291–296.CrossRefGoogle Scholar
  18. Hellrigl, K. 1999. Die Verbreitung der Roßkastanien-Miniermotte Cameraria ohridella Deschka & Dimic 1986 (Lepidoptera, Gracillariidae) in Südtirol. Veroeffentl. Tiroler Landesmus. Ferdinandeum 79:265–300.Google Scholar
  19. Hellrigl, K. 2001. Neue Untersuchungen über die Rosskastanien-Miniermotte C. ohridella (Deschka & Dimic), 1986 (Lep., Gracillariidae). Gredleriana 1:9–81.Google Scholar
  20. Hobson, K. R., Wood, D. L., Cool, L. G., White, P. R., Ohtsuka, T., Kubo, I., and Zavarin, E. 1993. Chiral specificity in responses by the bark beetle Dendroctonus valens to host kairomones. J. Chem. Ecol. 19:1837–1846.CrossRefGoogle Scholar
  21. Hochmuth, D. H. 2004. MassFinder für Windows [Software zur Analyse chemischer Verbindungen] Version
  22. Hopke, J., Donath, J., Blechert, S., and Boland, W. 1994. Herbivore-induced volatiles: The emission of acyclic homoterpenes from leaves of Phaseolus and Zea mays can be triggered by a β-glucosidase and jasmonic acid. FEBS Lett. 352:146–150.PubMedCrossRefGoogle Scholar
  23. Johne, A. B. 2001. Ein Beitrag zum Auftreten und zur Verbreitung der Kastanienminiermotte (Cameraria ohridella Deschka & Dimic). Diploma thesis, University of Applied Science, Dresden.Google Scholar
  24. Johne, A. B., Füldner, K., Weißbecker, B., and Schütz, S. 2003. Kopplung der phänologischen Entwicklung der Rosskastanie A. hippocastanum mit Lebenszyklus und Verhalten der Kastanienminiermotte C. ohridella. Nachrichtenbl. Dtsch. Pflanzenschutz. 55:213–220, 299.Google Scholar
  25. Johne, B., Schütz, S., and Füldner K. 2005. Hinweise zur Morphologie und Entwicklung der Kastanienminiermotte Cameraria ohridella (Lep.: Gracillariidae) im südlichen Niedersachsen (NW-Deutschland). Philippia Ottoneum Kassel 12:137–146.Google Scholar
  26. Kindl, J., Kanlinová, B., Freise, J., Heitland, W., Augustin, S., Guichard, S., Avtzis, N., and Svatoš, A. 2002. Monitoring the population dynamics of the horse chestnut leafminer Cameraria ohridella with a synthetic pheromone in Europe. Plant Protect. Sci. 38:131–138.Google Scholar
  27. König, W. A., Joulain, D., and Hochmuth, D. H. 2004. Terpenoids and Related Constituents of Essential Oils [database],
  28. Langenheim, J. H. 1994. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 20:1223–1280.CrossRefGoogle Scholar
  29. Lozán, J. L. and Kausch, H. 1998. Angewandte Statistik für Naturwissenschaftler. Parey Verlag, Berlin.Google Scholar
  30. Maeda, T. and Takabayashi, J. 2001. Production of herbivore-induced plant volatiles and their attractiveness to Phytoseius persimilis (Acari: Phytoseiidae) with changes of Tetranychus urticae (Acari: Tetranychidae) density on a plant. Appl. Entomol. Zool. 36:47–52.CrossRefGoogle Scholar
  31. Matsuki, M., Clarke, B., Ebbers, M., Eschler, B., Foley, W., Lawler, I., Moore, B., Watson M., and Floyd R. B. 2001. Herbivory by Christmas beetles in Southeast Australia in relation to intra specific variation in Eucalyptus leaf chemistry, pp. 29–53, in R. B. Floyd and W. J. Foley (eds.). Identifying Pest Resistant Eucalyptus Using Near-infrared Spectroscopy. Rural Industries Research and Development Corporation, Australia.Google Scholar
  32. OriginLab, 2002. ORIGIN für Windows [Software für Datenanalyse und Technische Graphiken] Version 7,
  33. Pschorn-Walcher, H. 1994. Freiland Biologie der eingeschleppten Roßkastanien-Miniermotte Cameraria ohridella Deschka and Dimic (Lep., Gracillariidae) im Wienerwald. Linzer Biol. Beitr. 26:633–642.Google Scholar
  34. Röse, U. S. R., Manukian, A., Heath, R. R., and Tumlinson, J. H. 1996. Volatile semichemicals released from undamaged cotton leaves. Plant Physiol. 111:487–495.PubMedGoogle Scholar
  35. Schütz, S. 2001. Der Einfluss verletzungsinduzierter Emissionen der Kartoffelpflanze (S. tuberosum) auf die geruchliche Wirtspflanzenfindung und -auswahl durch den Kartoffelkäfer (L. decemlineata). Habilitation. Justus Liebig University, Gießen.Google Scholar
  36. Schütz, S., Weißbecker, B., Klein, A., and Hummel, H. E. 1997. Host plant selection of the Colorado potato beetle as influenced by damage-induced volatiles of the potato plant. Naturwissenschaften 84:212–217.CrossRefGoogle Scholar
  37. Schütz, S., Weissbecker, B., Koch, U. T., and Hummel, H. E. 1999. Detection of volatiles released by diseased potato tubers using a biosensor on the basis of intact insect antennae. Biosens. Bioelectron. 14:221–228.CrossRefGoogle Scholar
  38. Scutareanu, P., Drukker, B., Bruin, J., Posthumus, M. A., and Sabelis, M. W. 1997. Volatiles from psylla-infested pear trees and their possible involvement in attraction of anthocorid predators. J. Chem. Ecol. 23:2241–2260.CrossRefGoogle Scholar
  39. Šefrová, H. 2003. Invasions of Lithocolletinae species in Europe—causes, kinds, limits and ecological impact (Lepidoptera, Gracillariidae). Ecólogia (Bratislava) 22:132–124.Google Scholar
  40. Šefrová, H. and Skuhravý, V. 2000. The larval morphologie of Cameraria ohridella Deschka & Dimic compared with the Phyllonorycter Hübner (Lepidoptera, Gracillariidae). Acta Univ. Agric. Silvic. Mendel. Brun. 4:23–30.Google Scholar
  41. Shulaev, V., Silverman, P., and Raskin, I. 1997. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721.CrossRefGoogle Scholar
  42. Skuhravý, V. 1999. Zusammenfassende Betrachtung der Kenntnisse über die Rosskastanienminiermotte, Cameraria ohridella Deschka & Dimic (Lep., Gracillariidae). Anz. Schädlingskund. 72:95–99.Google Scholar
  43. StatSoft, Inc., 2003. STATISTICA für Windows [Software-System für Datenanalyse] Version 6,
  44. Steinbauer, M. J. and Wanjura, W. J. 2002. Christmas beetles (Anoplognathus spp., Coleoptera: Scarabaeidae) mistake peppercorn trees for eucalyptus. J. Nat. Hist. 36:119–125.CrossRefGoogle Scholar
  45. Svatoš, A., Kalinova, B., Hoskovec, M., Hovorka, O., and Hrdy, I. 1999. Identification of a new lepitopteran sex pheromone in picogram quantities using an antennal biodetector: (8E,10Z)-Tetradeca-8,10-dienal from Cameraria ohridella. Tetrahedron Lett. 40:7011–7014.CrossRefGoogle Scholar
  46. Tomiczek, C. and Krehan, H. 1998. The horsechestnut leafmining moth (Cameraria ohridella): A new pest in Central Europa. J. Arboric. 24:144–148.Google Scholar
  47. Visser, J. H. 1986. Host odor perception in phytophagous insects. Annu. Rev. Entomol. 31:121–44.CrossRefGoogle Scholar
  48. Visser, J. H. and A, D. A. 1978. General green leaf volatiles in the olfactory orientation of the Colorado beetle Leptinotarsa decemlineata. Entonol. Exp. Appl. 24:538–549.Google Scholar
  49. Weissbecker, B., Holighaus, G., and Schütz, S. 2004. Gas chromatography with mass spectrometric and electroantennographic detection: Analysis of wood odorants by direct coupling of insect olfaction and mass spectrometry. J. Chromatogr. A. 1056:209–216.PubMedCrossRefGoogle Scholar
  50. Weissbecker, B., Van Loon, J. J. A., and Dicke, M. 1999. Electroantennogram responses of a predator, Perillus bioculatus, and its prey, Leptinotarsa decemlineata, to plant volatiles. J. Chem. Ecol. 25:313–2325.CrossRefGoogle Scholar
  51. Zhang, Q. H., Schlyter, F., Battisti, A., Birgersson, G., and Anderson, P. 2003. Electrophysiological responses of Thaumetopoea pityocampa females to host volatiles: Implications for host selection of active and inactive terpenes. J. Pest Sci. 76:103–107.Google Scholar
  52. Zhu, S., Yang, Y., Yu, H., Yue, Y., and Zou, G. 2005. Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum. J. Ethnopharmacol. 96:151–158.CrossRefGoogle Scholar
  53. Zunke, U. and Doobe, G. 2003. Neue Erkenntnisse zur Rosskastanien-Miniermotte durch das Hamburger Cameraria-Projekt, pp. 176–193, in D. Dujesiefken and P. Kockerbeck (eds.). Jahrbuch der Baumpflege 2003. Thalacker Medien, Braunschweig, Germany.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. Bettina Johne
    • 1
    Email author
  • Bernhard Weissbecker
    • 1
  • Stefan Schütz
    • 1
  1. 1.Institute for Forest Zoology and Forest ConservationGeorg August UniversityGoettingenGermany

Personalised recommendations