Journal of Chemical Ecology

, Volume 32, Issue 10, pp 2219–2233 | Cite as

Individual Variation in Alkaloid Content of Poison Frogs of Madagascar (Mantella; Mantellidae)

  • Valerie C. Clark
  • Valérie Rakotomalala
  • Olga Ramilijaona
  • Leif Abrell
  • Brian L. Fisher


Brightly colored Malagasy poison frogs, Mantella spp., sequester lipophilic, basic alkaloids from arthropod prey for their own chemical defense. Consequently, microsympatric prey diversity is expected to influence alkaloid diversity observed in poison frogs. Twenty-two specimens of three Mantella species from four localities in moist forests of southeastern Madagascar were analyzed individually via gas chromatography-mass spectrometry, revealing that they contain over 80 known alkaloids. Frogs within a locality possessed significantly similar alkaloid content and diversity, while frogs from areas that varied in disturbance, elevation, and/or species showed greater differences. Based on dietary data, the larger frog species Mantella baroni consumed more and larger prey, and showed greater diversity in skin alkaloids than significantly smaller Mantella bernhardi. Additionally, frogs from the most pristine locality had the greatest number of alkaloids, whereas individuals from the most disturbed localities had the least. In a comparison of frog alkaloid profiles over a 10- to 14-yr period, alkaloid turnover, and thus presumably alkaloid-source arthropod turnover, was high in a disturbed locality and low in the pristine primary forest locality. We demonstrate that the nonlethal transcutaneous amphibian stimulator (TAS) is effective for harvesting alkaloids from poison frogs; future studies using this device could obtain larger sample sizes without harming local frog populations.


Chemical defense Allomones Mantella Chemical ecology Temporal variation Geographic variation Habitat disturbance Ant alkaloids Alkaloid profiles Poison frogs 



transcutaneous amphibian stimulator










American Museum of Natural History


University of Antananarivo Department of Animal Biology


relative abundance in EI mode


snout–vent length



We thank Elizabeth E., Sandra P., and William S. Clark, John W. Daly, Jerrold Meinwald, Helian Ratsirarson, Aimee Razafiarimalala, and Justin Solo for their help, anonymous reviewers for critical readings of this manuscript, Christopher J. Raxworthy for discussions, Julián Faivovich for frog dissection training, and Florio Arguillas and Françoise Vermeylen for statistical consulting at Cornell. This work was supported by National Science Foundation Grants DEB-9984496 (to C.J. Raxworthy) for VC Clark’s 2003 fieldwork, DEB-0344731 (to B.L.F. and P.S. Ward) for arthropod processing, and CHE-0216226 to Prof. Koji Nakanishi for GC-TOF-MS acquisition and partial support of L.A. The UADAB, Association Nationale pour la Gestion des Aires Protégées, Direction Generale des Eaux et Forêts, Madagascar Institute pour la Conservation des Ecosystèmes Tropicaux, and California Academy of Sciences team in Antananarivo facilitated activities in Madagascar, and Columbia University (including Edward Bass for Biosphere 2) and the American Museum of Natural History provided research support in the United States.

Supplementary material

10886_2006_9144_MOESM1_ESM.pdf (483 kb)
Supplement 1 Supplementary information for journal of chemical ecology (PDF 494 kb)


  1. Bradt, H. 1999. Madagascar, the Bradt Travel Guide. Globe Pequot Press, USA.Google Scholar
  2. Clark, V. C., Raxworthy, C. J., Rakotomalala, V., Sierwald, P., and Fisher, B. L. 2005. Convergent evolution of chemical defense in poison frogs and arthropod prey between Madagascar and the Neotropics. Proc. Natl. Acad. Sci. USA 102:11617–11622.PubMedCrossRefGoogle Scholar
  3. Daly, J. W. 1982. Alkaloids of Neotropical poison frogs (Dendrobatidae). Fortschr. Chem. Org. Naturst. (Prog. Chem. Org. Natl. Prod.) 41:205–340.Google Scholar
  4. Daly, J. W. 2005. Nicotinic agonists, antagonists, and modulators from natural sources. Cell. Mol. Neurobiol. 25:513–552.PubMedCrossRefGoogle Scholar
  5. Daly, J. W., Garraffo, H. M., Pannell, L. K., Spande, T. F., Severini, C., and Erspamer, V. 1990. Alkaloids from Australian frogs (Myobatrachidae): pseudophyrnamines and pumiliotoxins. J. Nat. Prod. 53:401–21.CrossRefGoogle Scholar
  6. Daly, J. W., Secunda, S. I., Garraffo, H. M., Spande, T. F., Wisneiski, A., Nishihira, C., and Cover, J. F. Jr. 1992. Variability in alkaloid profiles in Neotropical poison frogs (Dendrobatidae): Genetic versus environmental determinants. Toxicon 30:887–98.PubMedCrossRefGoogle Scholar
  7. Daly, J. W., Garraffo, H. M., Spande, T. F., Jaramillo, C., and Rand, A. S. 1994a. Dietary source for skin alkaloids of poison frogs (Dendrobatidae)? J. Chem. Ecol. 20:943–55.CrossRefGoogle Scholar
  8. Daly, J. W., Secunda, S. I., Garraffo, H. M., Spande, T. F., Wisnieski, A., and Cover, J. F. Jr. 1994b. An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon 32:657–63.PubMedCrossRefGoogle Scholar
  9. Daly, J. W., Andriamaharavo, N. R., Andriantsiferana, M., and Myers, C. W. 1996. Madagascan poison frogs (Mantella) and their skin alkaloids. Am. Mus. Novit. 3177:1–34.Google Scholar
  10. Daly, J. W., Garraffo, H. M., Hall, G. S., and Cover, J. F. Jr. 1997. Absence of skin alkaloids in captive-raised Madagascan mantelline frogs (Mantella) and sequestration of dietary alkaloids. Toxicon 35:1131–5.PubMedCrossRefGoogle Scholar
  11. Daly, J. W., Garraffo, H. M., and Spande, T. F. 1999. Alkaloids from amphibian skins, pp. 1–161, in S. W. Pelletier (ed.). Alkaloids: Chemical and Biological Perspectives, vol. 13. Pergamon, New York.Google Scholar
  12. Daly, J. W., Kaneko, T. Wilham, J. Garraffo, H. M. Spande, T. F. Espinosa A., and Donnelly, M. A. 2002. Bioactive alkaloids of frog skin: combinatorial bioprospecting reveals that pumiliotoxins have an arthropod source. Proc. Natl. Acad. Sci. USA. 99:13996–14001.PubMedCrossRefGoogle Scholar
  13. Daly, J. W., Garraffo, H. M., Spande, T. F., Clark, V. C., Ma, J., Ziffer, H., and Cover, J. F. Jr. 2003. Evidence for an enantioselective pumiliotoxin 7-hydroxylase in dendrobatid poison frogs of the genus Dendrobates. Proc. Natl. Acad. Sci. USA 100:11092–7.PubMedCrossRefGoogle Scholar
  14. Daly, J. W., Noimai, N., Kongkathip, B., Kongkathip, N., Wilham, J., Garraffo, H. M., Kaneko, T., Spande, T. F., Nimit, Y., Nabhitabhata, J., and Chan-Ard, T. 2004. Biologically active substances from amphibians: preliminary studies on anurans from twenty-one genera of Thailand. Toxicon 44:805–15.PubMedCrossRefGoogle Scholar
  15. Daly, J. W., Spande, T. F., and Garraffo, H. M. 2005. Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J. Nat. Prod. 68:1556–1575.PubMedCrossRefGoogle Scholar
  16. Eisner, T., Alsop, D., Hicks, K., and Meinwald, J. 1978. Defensive secretions of millipeds. In S. Bettini (ed.). Handbook of Experimental Pharmacology, vol. 48, Arthropod Venoms. Springer-Verlag, New York.Google Scholar
  17. Fisher, B. 1998. Ant diversity patterns along an elevational gradient in the Reserve Speciale d’Anjanaharibe-Sud and on the Western Masoala Peninsula, Madagascar. Fieldiana, Zool. 90:39–67.Google Scholar
  18. Fisher, B. L., Ratsirarson, H., and Razafimandimby, S. 1998. Les Fourmis (Hymenoptera: Formicidae) pp. 107–131. In: Inventaire biologique de la Forêt Littorale de Tampolo (Fenoarivo Atsinaanana). J. Ratsirarson and S.M. Goodman (eds.). Recherches pour le Développement, Série Sciences Biologiques. No. 14. Centre d’Information et de Documentation Scientifique et Technique, Antananarivo, Madagascar.Google Scholar
  19. Fisher, B. L. 2005. A new species of Discothyrea Roger from Mauritius and a new species of Proceratium from Madagascar (Hymenoptera: Formicidae). Proc. Calif. Acad. Sci. 56:657–667.Google Scholar
  20. Grant, J. B. and Land, B. 2002. Transcutaneous Amphibian Stimulator (TAS): a device for the collection of amphibian skin secretions. Herpetol. Rev. 33:38–41.Google Scholar
  21. Jones, T. H., Gorman, J. S., Snelling, R. R., Delabie, J. H., Blum, M. S., Garraffo, H. M., Jain, P., Daly, J. W., and Spande, T. F. 1999. Further alkaloids common to ants and frogs: decahydroquinolines and a quinolizidine. J. Chem. Ecol. 25:1179–93.CrossRefGoogle Scholar
  22. King, A. G. and Meinwald, J. 1996. Review of the defensive chemistry of Coccinellids. Chem. Rev. 96:1105–22.CrossRefGoogle Scholar
  23. Laurent, P., Braekman, J. C., and Daloze, D. 2005. Insect chemical defense. Top. Curr. Chem. 240:167–229.Google Scholar
  24. Leclercq, S., Braekman, J. C., Daloze, D., and Pasteels, J. M. 2000. The defensive chemistry of ants. Prog. Chem. Org. Nat. Prod. 79:115–229.Google Scholar
  25. Mebs, D., Pogoda, W., Maneyro, R., and Kwet, A. 2005. Studies on the poisonous skin secretion of individual red bellied toads, Melanophyrniscus montevidensis (Anura, Bufonidae), from Uruguay. Toxicon 46:641–650.PubMedCrossRefGoogle Scholar
  26. Myers, C. W. and Daly, J. W. 1980. Taxonomy and ecology of Dendrobates bombetes, a new Andean poison frog with new skin toxins. Am. Mus. Novit. 2692:1–23.Google Scholar
  27. Myers, C. W., Daly, J. W., Garraffo, H. M., Wisnieski, A., and Cover, J. F. Jr. 1995. Discovery of the Costa Rican poison frog Dendrobates granuliferus in sympatry with Dendrobates pumilio, and comments on taxonomic use of skin alkaloids. Am. Mus. Novit. 3144:1–21.Google Scholar
  28. Rabemananjara, F., Bora, P., Cadle, J. E., Anderone, F., Rajeriarison, E., Talata, P., Glaw, F., Vences, M., and Vietes, D. R. 2005. New records, distribution and conservation of Mantella bernhardi, an endangered frog species from south-eastern Madagascar. Oryx 39:339–342.CrossRefGoogle Scholar
  29. Saporito, R. A., Garraffo, H. M., Donnelly, M. A., Edwards, A. L., Longino, J. T., and Daly, J. W. 2004. Formicine ants: an arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs. Proc. Natl. Acad. Sci. USA 101:8045–50.PubMedCrossRefGoogle Scholar
  30. Saporito, R. A., Donnelly, M. A., Garraffo, H. M., Spande, T. F. and Daly, J. W. 2006. Geographic and seasonal variation in alkaloid-based chemical defenses of Dendrobates pumilio from Bocas del Toro, Panama. J. Chem. Ecol. DOI
  31. Smith, B. P., Tyler, M. J., Kaneko, T., Garraffo, H. M., Spande, T. F., and Daly, J. W. 2002. Evidence for biosynthesis of pseudophrynamine alklaloids by an Australian Myobatrachid frog (Pseudophryne) and for the sequestration of dietary pumiliotoxins. J. Nat. Prod. 65:439–47.PubMedCrossRefGoogle Scholar
  32. Takada, W., Sakata, T., Shimano, S., Enami, Y., Mori, N., Nishida, R., and Kuwahara, Y. 2005. Scheloribatid mites as the source of pumiliotoxins in dendrobatid frogs. J. Chem. Ecol. 31:2403–2415.PubMedCrossRefGoogle Scholar
  33. Vences, M., Glaw, F., and Bohme, W. 1999. A review of the genus Mantella (Anura, Ranidae, Mantellinae): taxonomy, distribution and conservation of Malagasy poison frogs. Alytes 17:3–72.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Valerie C. Clark
    • 1
  • Valérie Rakotomalala
    • 2
  • Olga Ramilijaona
    • 2
  • Leif Abrell
    • 3
  • Brian L. Fisher
    • 4
  1. 1.Department of Chemistry and Chemical BiologyCornell UniversityIthacaUSA
  2. 2.Department of Animal BiologyUniversity of AntananarivoAntananarivoMadagascar
  3. 3.Department of ChemistryUniversity of ArizonaTuczonUSA
  4. 4.Department of EntomologyCalifornia Academy of SciencesSan FranciscoUSA

Personalised recommendations