Journal of Chemical Ecology

, Volume 32, Issue 10, pp 2191–2203 | Cite as

Structure–Activity Relationships of Benzoic Acid Derivatives as Antifeedants for the Pine Weevil, Hylobius abietis

  • C. Rikard Unelius
  • Göran Nordlander
  • Henrik Nordenhem
  • Claes Hellqvist
  • Sacha Legrand
  • Anna-Karin Borg-Karlson
Life Sciences


Aromatic organic compounds found in the feces of the pine weevil, Hylobius abietis (L.) (Coleoptera: Curculionidae), have been shown to deter feeding behavior in this species, which is a serious pest of planted conifer seedlings in Europe. We evaluated 55 benzoic acid derivatives and a few homologs as antifeedants for H. abietis. Structure–activity relationships were identified by bioassaying related compounds obtained by rational syntheses of functional group analogs and structural isomers. We identified five main criteria of efficiency as antifeedants among the benzoic acid derivatives. By predicting optimal structures for H. abietis antifeedants, we attempted to find a commercial antifeedant to protect conifer seedlings against damage by H. abietis in regenerating forests. New, highly effective antifeedants are methyl 2,4-dimethoxybenzoate, isopropyl 2,4-dimethoxybenzoate, methyl 2-hydroxy-3-methoxybenzoate, methyl (3,5-dimethoxyphenyl)acetate, and methyl (2,5-dimethoxyphenyl)acetate. Of these, methyl 2,4-dimethoxybenzoate and isopropyl 2,4-dimethoxybenzoate have the highest antifeedant indices of all substances tested and are the best candidates for practical applications in order to protect planted seedlings in the field.


Benzoate Bioassay Curculionidae Deterrent Feces Feeding Isopropyl 2,4-dimethoxybenzoate Methyl 2,4-dimethoxybenzoate Phenylacetate Reforestation Seedling protection 



We thank Anoma Mudalige and Henning Henschel for chemical syntheses and Olle Terenius for assistance with the bioassays. This study was financially supported by the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas; G.N, R.U., A.K.B.K.), The Carl Trygger Foundation (A.K.B.K.), the University of Kalmar (R.U.), and the Swedish Hylobius Research Program (funded by Swedish forest industries; G.N.).


  1. Baeckström, P., Stridh, K., Li, L., and Norin, T. 1987. Claisen rearrangements with mesityloxide dimethyl ketal. Synthesis of ipsdienone, E- and Z-ocimenone, 2,6-dimethyl-2,7-octadien-4-one and 2,6-dimethyl-2,7-octadien-4-ol. Acta Chem. Scand. B41:442–447.CrossRefGoogle Scholar
  2. Blaney, W. M., Simmonds, M. S. J., Evans, S. V., and Fellows, L. E. 1984. The role of the secondary plant compound 2,5-dihydroxymethyl 3,4-dihydroxypyrrolidine as a feeding inhibitor for insects. Entomol. Exp. Appl. 36:209–216.CrossRefGoogle Scholar
  3. Borg-Karlson, A.-K., Nordlander, G., Mudalige, A., Nordenhem, H., and Unelius, C. R. 2006. Antifeedants in the feces of the pine weevil Hylobius abietis: identification and biological activity. J. Chem. Ecol. 32:943–957.PubMedCrossRefGoogle Scholar
  4. Bratt, K., Sunnerheim, K., Nordenhem, H., Nordlander, G., and Långström, B. 2001. Pine weevil (Hylobius abietis) antifeedants from lodgepole pine (Pinus contorta). J. Chem. Ecol. 27:2253–2262.PubMedCrossRefGoogle Scholar
  5. Bylund, H., Nordlander, G., and Nordenhem, H. 2004. Feeding and oviposition rates in the pine weevil Hylobius abietis (Coleoptera: Curculionidae). Bull. Entomol. Res. 94:307–317.PubMedCrossRefGoogle Scholar
  6. Day, K. R., Nordlander, G., Kenis, M., and Halldórsson, G. 2004. General biology and life cycles of bark weevils, pp. 331–349, in F. Lieutier, K. R. Day, A. Battisti, J.-C. Grégoire, and H. F. Evans (eds.). Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  7. Fischer, D. C., Kogan, M., and Paxton, J. 1990. Deterrency of Mexican bean beetle (Coleoptera: Coccinellidae) feeding by free phenolic acids. J. Entomol. Sci. 25:230–238.Google Scholar
  8. Hansch, C. and Deutsch, E. W. 1966. The structure–activity relationship in amides inhibiting photosynthesis. Biochim. Biophys. Acta 112:381–391.Google Scholar
  9. Hansch, C. and Fujita, T. 1964. Rho–sigma–phi Analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 86:1616–1626.CrossRefGoogle Scholar
  10. Hansch, C., Muir, R. M., Fujita, T., Maloney, P. P., Geiger, F., and Streich M. 1963. The correlation of biological activity of plant growth regulators and chloromycetin derivatives with Hammett constants and partition coefficients. J. Am. Chem. Soc. 85:2817–2824.CrossRefGoogle Scholar
  11. Hoffmann, N. and Pete, J.-P. 2001. Intramolecular [2 + 2] photocycloaddition of bichromophoric derivatives of 3,5-dihydroxybenzoic acid and 3,5-dihydroxybenzonitrile. Synthesis 8:1236–1242.CrossRefGoogle Scholar
  12. Klepzig, K. D. and Schlyter, F. 1999. Laboratory evaluation of plant-derived antifeedants against the pine weevil Hylobius abietis (Coleoptera: Curculionidae). J. Econ. Entomol. 92:644–650.Google Scholar
  13. Künhert, S. M. and Maier, M. E. 2002. Synthesis of the core structure of apicularen by transannular cyclization. Org. Lett. 4:643–646.CrossRefGoogle Scholar
  14. Långström, B. and Day, K. R. 2004. Damage, control and management of weevil pests, especially Hylobius abietis, pp. 415–444, in F. Lieutier, K. R. Day, A. Battisti, J.-C. Grégoire, and H. F. Evans (eds.). Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  15. Legrand, S., Nordlander, G., Nordenhem, H., Borg-Karlson, A.-K., and Unelius, C. R. 2004. Hydroxy-methoxybenzoic methyl esters: synthesis and antifeedant activity on the pine weevil, Hylobius abietis. Z. Naturforsch. 59b:829–835.Google Scholar
  16. Ley, S. V., Anderson, J. C., Blaney, W. M., Morgan, E. D., Sheppard, R. N., Simmonds, M. S. J., Slawin, A. M. Z., Smith, S. C., Williams, D. J., and Wood, A. 1991. Chemistry of insect antifeedants from Azadirachta indica. Part 11. Characterization and structure activity relationships of some novel rearranged azadirachtins. Tetrahedron 47:9231–9246.CrossRefGoogle Scholar
  17. Luteijn, J. M. and DeGroot, A. 1981. Stereospecific synthesis of 9α-(acetoxymethyl)-8α,8′-epoxy-3α,4,4-trimethyl-trans-decalin-1α-ol acetate, a model for the investigation of structure–activity relationships of the insect antifeedant neoclerodanes. J. Org. Chem. 46:3448–3452.CrossRefGoogle Scholar
  18. Luthria, D. L., Ramakrishman, V., and Banerji, A. 1993. Insect antifeedant activity of furochromones: structure–activity relationships. J. Nat. Prod. 56:671–675.Google Scholar
  19. Morimoto, M., Urakawa, M., Fujitaka, T., and Komai, K. 1999. Structure–activity relationship for the insect antifeedant activity of benzofuran derivatives. Biosci. Biotechnol. Biochem. 63:840–846.CrossRefGoogle Scholar
  20. Nordlander, G., Nordenhem, H., Borg-Karlson, A.-K., and Unelius, C. R. 2000. Use for conifer sapling protection. Swedish and PCT Patent Application WO 0056152 A1.Google Scholar
  21. Örlander, G. and Nilsson, U. 1999. Effect of reforestation methods on pine weevil (Hylobius abietis) damage and seedling survival. Scand. J. For. Res. 14:341–354.CrossRefGoogle Scholar
  22. Petersson, M. and Örlander, G. 2003. Effectiveness of combinations of shelterwood, scarification, and feeding barriers to reduce pine weevil damage. Can. J. For. Res. 33:64–73.CrossRefGoogle Scholar
  23. Rösecke, J. and König, W. A. 2000. Odorous compounds from the fungus Gloeophyllum odoratum. Flavour Fragr. J. 15:315–319.CrossRefGoogle Scholar
  24. Rösecke, J., Pietsch, M., and König, W. A. 2000. Volatile constituents of wood-rotting basidiomycetes. Phytochemistry 54:747–750.PubMedCrossRefGoogle Scholar
  25. Salom, S., Carlson, J. A., Ang, B. N., Grosman, D. M., and Day, E. R. 1994. Laboratory evaluation of biologically-based compounds as antifeedants for the pales weevil, Hylobius pales (Herbst) (Coleoptera, Curculionidae). J. Entomol. Sci. 29:407–419.Google Scholar
  26. Schlyter, F., Smitt, O., Sjödin, K., Högberg, H.-E., and LÖfqvist, J. 2004. Carvone and less volatile analogues as repellent and deterrent antifeedants against the pine weevil, Hylobius abietis. J. Appl. Entomol. 128:610–619.CrossRefGoogle Scholar
  27. Topliss, J. G. 1972. Utilization of operational schemes for analog synthesis in drug design. J. Med. Chem. 15:1006–1011.PubMedCrossRefGoogle Scholar
  28. Von Sydow, F. 1993. Fungi occurring in the roots and basal parts of one- and two-year-old spruce and pine stumps. Scand. J. For. Res. 8:174–184.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • C. Rikard Unelius
    • 1
  • Göran Nordlander
    • 2
  • Henrik Nordenhem
    • 2
  • Claes Hellqvist
    • 2
  • Sacha Legrand
    • 1
  • Anna-Karin Borg-Karlson
    • 3
  1. 1.Department of Chemistry and Biomedical SciencesUniversity of KalmarKalmarSweden
  2. 2.Department of EntomologySwedish University of Agricultural SciencesUppsalaSweden
  3. 3.KTH Chemistry, Organic Chemistry, Ecological Chemistry GroupRoyal Institute of TechnologyStockholmSweden

Personalised recommendations