Journal of Chemical Ecology

, 32:2035 | Cite as

Chemical Communication in Chagas Disease Vectors. Source, Identity, and Potential Function of Volatiles Released by the Metasternal and Brindley's Glands of Triatoma infestans Adults

  • Gabriel Manrique
  • Ana C. R. Vitta
  • Raquel A. Ferreira
  • Carlos L. Zani
  • C. Rikard Unelius
  • Claudio R. Lazzari
  • Lileia Diotaiuti
  • Marcelo G. Lorenzo


Compounds from the metasternal and Brindley's glands of the blood-sucking bug, Triatoma infestans, were identified by solid phase microextraction (SPME) and gas chromatography-mass spectrometry. Volatile compounds released by adult bugs during copulation or after mechanical disturbance were also characterized. Six compounds were identified and found consistently in all samples from metasternal glands. The most abundant were 3-pentanone, 2-methylbutanol, 3-pentanol, and an unidentified compound. The metasternal gland blends did not differ qualitatively between sexes. Compounds found in Brindley's glands were short chain acids, alcohols, esters, and a ketone with no qualitative differences between sexes. Isobutyric acid was the main component of this blend, and two new confirmed compounds were described as products of these glands: 2-butanone and 2-methylbutyric acid. 3-Pentanone was collected from the headspace over 33% of the copulating pairs of T. infestans. Volatiles found in the headspace of disturbed T. infestans adults included short-chain fatty acids, alcohols, esters, and ketones, with no qualitative differences between sexes. Both types of glands apparently discharge their contents after disturbance. However, most of the volatiles released by bugs after disturbance came from Brindley's glands. The locomotor activity of fourth instars increased significantly after stimulation with the odors emitted by disturbed adults, as compared with larvae stimulated by the odor of undisturbed adults or by clean air. We also studied the directional behavioral response of fifth instars to the disturbance scent in a locomotion compensator. Larvae exposed to volatiles released by disturbed adults walked away from the direction of the odor. The results suggest that this blend or part of it functions as an alarm pheromone for T. infestans. We suggest that the metasternal glands of this species are involved both in the sexual and the alarm contexts, and that the Brindley's glands probably have both alarm and defensive roles.


Triatominae Metasternal gland Brindley's gland Male aggregation pheromone Alarm pheromone Chemical communication SPME Chagas disease 



The authors are indebted to Prof. K.-E. Kaissling (Max Planck Institut für Verhaltensphysiologie, Seewiesen, Germany) for suggestions and improvements in the manuscript, and to C. Reisenman (University of Arizona) for critically reading the manuscript. We thank G. Aulin-Erdtman, Stockholm, Sweden, G. Flores, New York, USA, and M. Melcón, Buenos Aires, Argentina, for corrections of the English. We wish to thank S. Minoli and R. Barrozo for advice on behavioral experiments, and the staff members of our laboratories for many fruitful discussions. We thank T. C. Insausti (Universidad de Buenos Aires, Argentina) for guidance to A. Vitta in the dissection of glands. We are also indebted to P. Guerenstein (University of Arizona) for his advice and criticism, and to M.C. Rodriguez and G. Vélez (both from Universidad de Buenos Aires, Argentina) for the provision of some chemical standards. This investigation received financial support from the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), CAPES-SETCIP, PRONEX, PAPES, FIOCRUZ, Swedish International Development Cooperation Agency (SIDA), CONICET and Universidad de Buenos Aires.


  1. Arthur, C. L. and Pawliszyn, J. 1990. Solid phase microextraction with thermal desorption using fused silica optic fibers. Anal. Chem. 62:2145–2148.CrossRefGoogle Scholar
  2. Baldwin, W. F., Knight, A. G., and Lynn, K. R. 1971. A sex pheromone in the insect Rhodnius prolixus (Hemiptera: Reduviidae). Can. Entomol. 103:18–22.CrossRefGoogle Scholar
  3. Barrozo, R. B., Manrique, G., and Lazzari, C. R. 2003. The role of water vapour in the orientation behaviour of the blood-sucking bug Triatoma infestans (Hemiptera, Reduviidae). J. Insect Physiol. 49:315–321.PubMedCrossRefGoogle Scholar
  4. Barth, R. 1980. A glandula ectodermal do aparelho copulador do Triatoma infestans. Mem. Inst. Oswaldo Cruz 75:119–124.PubMedGoogle Scholar
  5. Blum, M. S. 1996. Semiochemical parsimony in the Arthropoda. Annu. Rev. Entomol. 41:353–374.PubMedCrossRefGoogle Scholar
  6. Carayon, J., Usinger, R. L., and Wygodzinsky, P. 1958. Notes on the higher classification of the Reduviidae, with the description of a new tribe of the Phymatinae. Rev. Zool. Bot. Afr. 57:256–281.Google Scholar
  7. Cruz López, L., Morgan, E. D., and Ondarza, R. N. 1995. Brindley's gland exocrine products of Triatoma infestans. Med. Vet. Entomol. 9:403–406.PubMedCrossRefGoogle Scholar
  8. Cruz López, L., Malo, E. A., Rojas, J. C., and Morgan, E. D. 2001. Chemical ecology of triatomine bugs: Vectors of chagas disease. Med. Vet. Entomol. 15:351–357.PubMedCrossRefGoogle Scholar
  9. Dias, J. C. P., Silveira, A. C., and Schofield, C. J. 2002. The impact of chagas disease control in Latin America—A review. Mem. Inst. Oswaldo Cruz 97:603–612.PubMedCrossRefGoogle Scholar
  10. Eisner, T. 2004. For Love of Insects. Belknap Press, Harvard University Press, Cambridge, MA.Google Scholar
  11. Espínola, H. N. 1966. Nota sobre diferenças sexuais em formas imaturas de Triatominae (Hemiptera, Reduviidae). Rev. Bras. Biol. 26:263–267.PubMedGoogle Scholar
  12. Fontán, A., Audino, P. G., Martinez, A., Alzogaray, R. A., Zerba, E. N., Camps, F., and Cork, A. 2002. Attractant volatiles released by female and male Triatoma infestans (Hemiptera: Reduviidae), a vector of chagas disease: Chemical analysis and behavioral bioassay. J. Med. Entomol. 39:191–197.PubMedGoogle Scholar
  13. Games, D. E., Schofield, C. J., and Staddon, B. W. 1974. The secretion from Brindley's scent gland in Triatominae. Ann. Entomol. Soc. Am. 67:820.Google Scholar
  14. Giblin-Davis, R. M., Oehlschlager, A. C., Perez, A., Gries, G., Gries, R., Weissling, T. J., Chinchilla, C. M., Peña, J. E., Hallett, R. H., Pierce, H. D. Jr., and González, L. M. 1996. Chemical and behavioral ecology of palm weevils (Curculionidae: Rhynchophorinae). Fla. Entomol. 79:153–167.CrossRefGoogle Scholar
  15. Guerenstein, P. G. 1999. Sensory and behavioural responses of Triatoma infestans to host and conspecific odours. PhD thesis, Université de Neuchâtel, Switzerland, p. 137.Google Scholar
  16. Guerenstein, P. G. and Guerin, P. M. 2001. Olfactory and behavioural responses of the blood-sucking bug Triatoma infestans to odours of vertebrate hosts. J. Exp. Biol. 204:585–597.PubMedGoogle Scholar
  17. Guerenstein, P. G. and Guerin, P. M. 2004. A comparison of volatiles emitted by adults of three triatomine species. Entomol. Exp. Appl. 111:151–155.CrossRefGoogle Scholar
  18. Hack, W. H., Ricciardi, A. I., Oscherov, B., and Olivetti, de B. 1980. Composition of the secretion of Brindley's gland in Triatominae. Medicina (B. Aires) 40 Suppl. I:178–180.Google Scholar
  19. Hilker, M. and Schulz, S. 1994. Composition of larval secretion of Chrysomela lapponica (Coleoptera, Chrysomelidae) and its dependence on host plant. J. Chem. Ecol. 20:1075–1093.CrossRefGoogle Scholar
  20. Juárez, P. and Brenner, R. R. 1981. Bioquímica del ciclo evolutivo del Triatoma infestans (vinchuca). V. Emisión de ácidos grasos volátiles. Acta Fisiol. Lat.-Am. 31:113–117.Google Scholar
  21. Kälin, M. and Barrett, F. M. 1975. Observations on the anatomy, histology, release-site, and function of Brindley's gland in the blood-sucking bug Rhodnius prolixus. Ann. Entomol. Soc. Am. 68:126–134.Google Scholar
  22. Kanehisa, K. and Kawazu, K. 1982. Fatty-acid components of the defensive substances in acid secreting carabid beetles. Appl. Entomol. Zool. 17:460–466.Google Scholar
  23. Kennedy, J. S. 1977. Olfactory responses to distant plants and other odor sources, pp. 6791, in H. H. Shorey and J. J. McKelvey (eds.). Chemical Control of Insect Behavior. Wiley-Interscience, New York.Google Scholar
  24. Manrique, G. and Lazzari, C. R. 1994. Sexual behaviour and stridulation during mating in Triatoma infestans (Hemiptera: Reduviidae). Mem. Inst. Oswaldo Cruz 89:629–633.PubMedCrossRefGoogle Scholar
  25. Manrique, G. and Lazzari, C. R. 1995. Existence of a sex pheromone in Triatoma infestans (Hemiptera: Reduviidae): I. Behavioural evidence. Mem. Inst. Oswaldo Cruz 90:645–648.PubMedGoogle Scholar
  26. Pattenden, G. and Staddon, B. W. 1972. Identification of iso-butyric acid in secretion from Brindley's scent glands in Rhodnius prolixus (Heteroptera: Reduviidae). Ann. Entomol. Soc. Am. 65:1240–1241.Google Scholar
  27. Rochat, D., Ramirez-Lucas, P., Malosse, C., Aldana, R., Kakul, T., and Morin, J. P. 2000. Role of solid-phase microextraction in the identification of highly volatile pheromones of two Rhinoceros beetles Scapanes australis and Strategus aloeus (Coleoptera, Scarabaeidae, Dynastinae). J. Chromatogr. A 885:433–444.PubMedCrossRefGoogle Scholar
  28. Rojas, J. C., Rios-Candelaria, E., Cruz López, L., Santiesteban, A., Bond-Compean, J. G., Brindis, Y., and Malo, E. A. 2002. A reinvestigation of Brindley's gland exocrine compounds of Rhodnius prolixus (Hemiptera: Reduviidae). J. Med. Entomol. 39:256–265.PubMedCrossRefGoogle Scholar
  29. Rossiter, M. and Staddon, B. W. 1983. 3-Methyl-2-hexanone from the triatominae bug Dipetalogaster maximus (Uhler) (Heteroptera; Reduviidae). Experientia 39:380–381.CrossRefGoogle Scholar
  30. Schofield, C. J. 1979. Demonstration of isobutyric acid in some triatomine bugs. Acta Trop. 36:103–105.PubMedGoogle Scholar
  31. Schofield, C. J. and Upton, C. P. 1978. Brindley's scent-glands and the metasternal scent-glands of Panstrongylus megistus (Hemiptera, Reduviidae, Triatominae). Rev. Bras. Biol. 38:665–678.Google Scholar
  32. Staddon, B. W. 1983. The scent glands of Heteroptera. Adv. Insect Physiol. 14:131–157.Google Scholar
  33. Ward, J. P. 1981. A comparison of the behavioural responses of the haematophagous bug, Triatoma infestans to synthetic homologues of two naturally occurring chemicals (n- and isobutyric acid). Physiol. Entomol. 6:325–329.CrossRefGoogle Scholar
  34. Weirauch, C. 2003. Glandular areas associated with the male genitalia in Triatoma rubrofasciata (Triatominae, Reduviidae, Hemiptera) and other Reduviidae. Mem. Inst. Oswaldo Cruz 98:773–776.PubMedCrossRefGoogle Scholar
  35. Weirauch, C. 2004. Distribution of a sternal glandular area among female Reduviidae (Heteroptera) with discussion of a possible pheromonal function. Dtsch. Entomol. Z. 51:3–6.Google Scholar
  36. WHO (World Health Organization) 1999. Chagas disease, Chile—Interruption of transmission. WHO, Wkly. Epidemiol. Rec. 74:9–11.Google Scholar
  37. Zar, J. H. 1984. Biostatistical Analysis, 2nd ed., Prentice-Hall, London.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Gabriel Manrique
    • 1
  • Ana C. R. Vitta
    • 2
  • Raquel A. Ferreira
    • 2
  • Carlos L. Zani
    • 3
  • C. Rikard Unelius
    • 4
  • Claudio R. Lazzari
    • 1
    • 5
  • Lileia Diotaiuti
    • 2
  • Marcelo G. Lorenzo
    • 2
  1. 1.Departamento de Biodiversidad y Biologia Experimental Laboratorio de Fisiología de Insectos, FCEyNUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Laboratório de Triatomíneos e Epidemiologia da Doença de Chagas-CPqRR-FIOCRUZBelo HorizonteBrazil
  3. 3.Laboratório de Química de Produtos NaturaisCPqRR-FIOCRUZBelo HorizonteBrazil
  4. 4.Department of Chemistry and Biomedical SciencesUniversity of KalmarKalmarSweden
  5. 5.Institut de Recherche sur la Biologie de l’Insecte, UMR CNRS 6035Université François RabelaisToursFrance

Personalised recommendations