Advertisement

Journal of Chemical Ecology

, Volume 32, Issue 9, pp 1911–1924 | Cite as

Attraction of Spodoptera frugiperda Larvae to Volatiles from Herbivore-Damaged Maize Seedlings

  • Mark J. Carroll
  • Eric A. Schmelz
  • Robert L. Meagher
  • Peter E. A. Teal
Article

Abstract

Plants respond to insect attack with the induction of volatiles that function as indirect plant defenses through the attraction of natural enemies to the herbivores. Despite the fact that volatiles are induced in response to caterpillar attack, their reciprocal effects on the host location behaviors of the same foraging herbivores are poorly understood. We examined orientation responses of sixth instar fall armyworm [FAW; Spodoptera frugiperda (Smith)] to odors from herbivore-damaged and undamaged maize seedlings (Zea mays var. Golden Queen) in y-tube olfactometer bioassays. While both damaged and undamaged maize seedlings were attractive compared with air, sixth instars preferred odors from damaged maize seedlings over odors from undamaged maize seedlings. Gas chromatography–mass spectrometry analysis of plant volatiles revealed that linalool and 4,8-dimethyl-1,3,7-nonatriene were the major volatiles induced by FAW herbivory 6 hr after initial damage. Given its prominence in induced plants and established attractiveness to adult FAW, linalool was evaluated both as an individual attractant and as a supplemental component of whole plant odors. Volatile linalool was more attractive than air to sixth instar FAW over a broad range of release rates. FAW also responded selectively to different amounts of linalool, preferring the higher amount. The orientation preferences of FAW were readily manipulated through capillary release of linalool into the airstream of whole plant odors. FAW preferred linalool over undamaged plant odors, and linalool-supplemented plant odors over unsupplemented plant odors, indicating that olfactory preferences could be changed by alteration of a single volatile component. These results suggest that although many induced volatiles attract natural enemies of herbivores, these defenses may also inadvertently recruit more larval herbivores to an attacked plant or neighboring conspecifics.

Keywords

Olfaction Fall armyworm Plant-herbivore interactions Induction Linalool Olfactometer 

Notes

Acknowledgments

We thank Hans Alborn, Sean Collins, Art Zangerl, and two anonymous reviewers for helpful comments that improved the manuscript. We also thank Julia Meredith, Nancy Lowman, and Valerie McManus for assistance in the maintenance of plants and insects used in this experiment.

References

  1. Anderson, P. and Alborn, H. 1999. Effects on oviposition behaviour and larval development of Spodoptera littoralis by herbivore-induced changes in cotton plants. Entomol. Exp. Appl. 92:45–51.CrossRefGoogle Scholar
  2. Anderson, P., Hilker, M., and Löfqvist, J. 1995. Larval diet influence on oviposition behavior in Spodoptera littoralis. Entomol. Exp. Appl. 74:71–82.CrossRefGoogle Scholar
  3. Anderson, P., Jonsson, M., and Morte, U. 2001. Variation in damage to cotton affecting larval feeding preference of Spodoptera littoralis. Entomol. Exp. Appl. 101:191–198.CrossRefGoogle Scholar
  4. Beredegué, M., Reitz, S. R., and Trumble, J. T. 1992. Host plant selection and development in Spodoptera exigua: Do mother and offspring know best? Entomol. Exp. Appl. 89:57–64.Google Scholar
  5. Bernasconi, M. L., Turlings, T. C. J., Ambrosetti, L., Bassetti, P., and Dorn, S. 1998. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol. Exp. Appl. 87:133–142.CrossRefGoogle Scholar
  6. Bernays, E. A. 1997. Feeding by lepidopteran larvae is dangerous. Ecol. Entomol. 22:121–123.CrossRefGoogle Scholar
  7. Bolter, C. J., Dicke, M., Van Loon, J. J. A., Visser, J. H., and Posthumus, M. A. 1997. Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 23:1003–1023.CrossRefGoogle Scholar
  8. Bultman, T. L. and Conard, N. J. 1998. Effects of endophytic fungus, nutrient level, and plant damage on performance of fall armyworm (Lepidoptera: Noctuidae). Environ. Entomol. 27:631–635.Google Scholar
  9. Carlsson, M. A., Anderson, P., Hartlieb, E., and Hansson, B. S. 1999. Experience-dependent modification of orientational response to olfactory cues in larvae of Spodoptera littoralis. J. Chem. Ecol. 25:2445–2454.CrossRefGoogle Scholar
  10. Chapman, J. W., Williams, T., Escribano, A., Caballero, P., Cave, R. D., and Goulson, D. 1999a. Age-related cannibalism and horizontal transmission of a nuclear polyhedrosis virus in larval Spodoptera frugiperda. Ecol. Entomol. 24:268–275.CrossRefGoogle Scholar
  11. Chapman, J. W., Williams, T., Escribano, A., Caballero, P., Cave, R. D., and Goulson, D. 1999b. Fitness consequences of cannibalism in the fall armyworm, Spodoptera frugiperda. Behav. Ecol. 10:298–303.CrossRefGoogle Scholar
  12. Chapman, J. W., Williams, T., Martinez, A. M., Cisneros, J., Caballero, P., Cave, R. D., and Goulson, D. 2000. Does cannibalism in Spodoptera frugiperda (Lepidoptera: Noctuidae) reduce the risk of predation? Behav. Ecol. Sociobiol. 48:321–327.CrossRefGoogle Scholar
  13. Davis, F. M., Williams, W. P., Chang, Y. M., Baker, G. T., and Hedin, P. A. 1999. Differential growth of fall armyworm larvae (Lepidoptera: Noctuidae) reared on three phenotypic regions of whorl leaves from a resistant and a susceptible maize hybrid. Fla. Entomol. 82:248–254.CrossRefGoogle Scholar
  14. De Moraes, C. M., Mescher, M. C., and Tumlinson, J. H. 2001. Caterpillar-induced nocturnal plant volatiles repel nonspecific females. Nature 410:577–580.PubMedCrossRefGoogle Scholar
  15. Deng, J. Y., Wei, H. Y., Huang, Y. P., and Du, J. W. 2004. Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants. J. Chem. Ecol. 30:2037–2045.PubMedCrossRefGoogle Scholar
  16. Dicke, M. and Sabelis, M. W. 1988. How plants obtain predatory mites as bodyguards. Neth. J. Zool. 38:148–165.CrossRefGoogle Scholar
  17. Doak, P. 2000. Population consequences of restricted dispersal for an insect herbivore in a subdivided habitat. Ecology 81:1828–1841.CrossRefGoogle Scholar
  18. Foster, R. E. 1989. Strategies for protecting sweet corn ears from damage by fall armyworms (Lepidoptera: Noctuidae) in Southern Florida. Fla. Entomol. 72:146–151.CrossRefGoogle Scholar
  19. Glendinning, J. I. 2002. How do herbivorous insects cope with noxious secondary plant compounds in their diet? Entomol. Exp. Appl. 104:15–25.CrossRefGoogle Scholar
  20. Gouinguené, S., Alborn, H., and Turlings, T. C. J. 2003. Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis. J. Chem. Ecol. 29:145–162.PubMedCrossRefGoogle Scholar
  21. Gouinguené, S., Pickett, J. A., Wadhams, L. J., Birkett, M. A., and Turlings, T. C. J. 2005. Antennal electrophysiological responses of three parasitic wasps to caterpillar-induced volatiles from maize (Zea mays mays), cotton (Gossypium herbaceum), and cowpea (Vigna unguiculata). J. Chem. Ecol. 31:1023–1038.PubMedCrossRefGoogle Scholar
  22. Harari, A. R., Ben-Yakir, D., and Rosen, D. 1994. Mechanism of aggregation behavior in Maladera matrida Argaman (Coleoptera: Scarabidae). J. Chem. Ecol. 20:361–371.CrossRefGoogle Scholar
  23. Heath, R. R. and Manukian, A. 1994. An automated-system for use in collecting volatile chemicals released from plants. J. Chem. Ecol. 20:593–608.CrossRefGoogle Scholar
  24. Hoballah, M. E. and Turlings, T. C. J. 2005. The role of fresh versus old leaf damage in the attraction of parasitic wasps to herbivore-induced maize volatiles. J. Chem. Ecol. 31:2003–2018.PubMedCrossRefGoogle Scholar
  25. Hoballah, M. E., Kollner, T. G., Degenhardt, J., and Turlings, T. C. J. 2004. Costs of induced volatile production in maize. Oikos 105:168–180.CrossRefGoogle Scholar
  26. Jonsson, M. and Anderson, P. 1999. Electrophysiological response to herbivore-induced host plant volatiles in the moth Spodoptera littoralis. Physiol. Entomol. 24:377–385.CrossRefGoogle Scholar
  27. Kaitaniemi, P., Vehvilainen, H. and Ruohomaki, K. 2004. Movement and disappearance of mountain birch defoliators are influenced by the interactive effects of plant architecture and induced resistance. Ecol. Entomol. 29:437–446.CrossRefGoogle Scholar
  28. Kakimoto, T., Fujisaki, K., and Miyatake, T. 2003. Egg laying preference, larval dispersion, and cannibalism in Helicoverpa armigera (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 96:793–798.CrossRefGoogle Scholar
  29. Karban, R. and Baldwin, I. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago, IL.Google Scholar
  30. King, E. G. and Leppla, N. C. 1984. Advances and Challenges in Insect Rearing. U.S. Government Printing Office.Google Scholar
  31. Landolt, P. J. 1993. Effects of host plant leaf damage on cabbage moth attraction and oviposition. Entomol. Exp. Appl. 67:79–85.CrossRefGoogle Scholar
  32. Landolt, P. J. 2001. Moth experience and not plant injury affected female cabbage looper moth (Lepidoptera: Noctuidae) orientation to potato plants. Fla. Entomol. 84:243–249.CrossRefGoogle Scholar
  33. Landolt, P. J., Tumlinson, J. H., and Alborn, D. H. 1999. Attraction of Colorado potato beetle (Coleoptera: Chrysomelidae) to damaged and chemically induced potato plants. Environ. Entomol. 28:973–978.Google Scholar
  34. Landolt, P. J., Brumley, J. A., Smithhisler, C. L., Biddick, L. L., and Hofstetter, R. W. 2000. Apple fruit infested with codling moth are more attractive to neonate codling moth larvae and possess increased amounts of (E,E)-alpha-farnesene. J. Chem. Ecol. 26:1685–1699.CrossRefGoogle Scholar
  35. Laue, M. 2000. Immunolocalization of general odorant-binding protein in antennal sensilla of moth caterpillars. Arthropod Struct. Dev. 29:57–73.PubMedCrossRefGoogle Scholar
  36. Lougrin, J. H., Potter, D. A., and Hamilton-Kemp, T. R. 1995. Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese beetle (Popilia japonica Newman). J. Chem. Ecol. 21:1457–1467.CrossRefGoogle Scholar
  37. Luginbill, P. 1928. The fall armyworm. U.S. Dept Agric. Tech. Bull. 34:1–91.Google Scholar
  38. Malo, E. A., Castrejon-Gomez, V. R., Cruz-Lopez, L., and Rojas, J. C. 2004. Antennal sensilla and electrophysiological response of male and female Spodoptera frugiperda (Lepidoptera: Noctuidae) to conspecific sex pheromone and plant odors. Ann. Entomol. Soc. Am. 97:1273–1284.CrossRefGoogle Scholar
  39. Marchand, D. and McNeil, J. N. 2004. The importance of behavioral plasticity for maximizing foraging efficiency in frugivorous lepidopteran larvae. J. Insect Behav. 17:673–684.CrossRefGoogle Scholar
  40. Martin, P., Wiseman, B., and Lynch, R. 1980. Action thresholds for fall armyworm on grain sorghum and coastal Bermuda grass. Fla. Entomol. 63:375–404.CrossRefGoogle Scholar
  41. McAuslane, H. J. and Alborn, H. T. 2000. Influence of previous herbivory on behavior and development of Spodoptera exigua larvae on glanded and glandless cotton. Entomol. Exp. Appl. 97:283–291.CrossRefGoogle Scholar
  42. Meagher, R. L. and Nagoshi, R. N. 2004. Population dynamics and occurrence of Spodoptera frugiperda host strains in southern Florida. Ecol. Entomol. 29:614–620.CrossRefGoogle Scholar
  43. Meagher, R. L., Nagoshi, R. N., Stuhl, C., and Mitchell, E. R. 2004. Larval development of fall armyworm (Lepidoptera: Noctuidae) on different cover crop plants. Fla. Entomol. 87:454–460.CrossRefGoogle Scholar
  44. Miranda-Anaya, M., Guevara-Fefer, P., and Garcia-Rivera, B. E. 2002. Circadian locomotor activity in the larva and adult fall armyworm, Spodoptera frugiperda (Noctuidae): Effect of feeding with the resistant variety of maize CML67. Biol. Rhythm Res. 33:475–486.CrossRefGoogle Scholar
  45. Nagoshi, R. N. and Meagher, R. L. 2004. Behavior and distribution of the two fall armyworm host strains in Florida. Fla. Entomol. 87:440–449.CrossRefGoogle Scholar
  46. Paré, P. W. and Tumlinson, J. H. 1997. Induced synthesis of plant volatiles. Nature 385:30–31.CrossRefGoogle Scholar
  47. Paré, P. W. and Tumlinson, J. H. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiol. 121:325–331.PubMedCrossRefGoogle Scholar
  48. Pashley, D. P. 1988. Quantitative genetics, development, and physiological adaptation in host strains of fall armyworm. Evolution 42:93–102.CrossRefGoogle Scholar
  49. Pitre, H. N., Mulrooney, J. E., and Hogg, D. B. 1983. Fall armyworm (Lepidoptera: Noctuidae) oviposition: Crop preferences and egg distribution on plants. J. Econ. Entomol. 76:463–466.Google Scholar
  50. Rodriguez-Saona, C. and Thaler, J. S. 2005. Herbivore-induced responses and patch heterogeneity affect abundance of arthropods on plants. Ecol. Entomol. 30:156–163.CrossRefGoogle Scholar
  51. Roitberg, B. D. and Mangel, M. 1993. Parent-offspring conflict and life history consequences in herbivorous insects. Am. Nat. 1442:443–456.CrossRefGoogle Scholar
  52. Røstelien, T., Stranden, M., Borg-Karlson, A. K., and Mustaparta, H. 2005. Olfactory receptor neurons in two heliothine moth species responding selectively to aliphatic green leaf volatiles, aromatic compounds, monoterpenes and sesquiterpenes of plant origin. Chem. Senses 30:443–461.PubMedCrossRefGoogle Scholar
  53. Saxena, K. N. and Khattar, P. 1977. Orientation of Papilio demoleus larvae in relation to size, distance, and combination pattern of visual stimuli. J. Insect Physiol. 23:1421–1428.CrossRefGoogle Scholar
  54. Schoonhoven, L. M. and Van Loon, J. J. A. 2002. An inventory of taste in caterpillars: Each species its own key. Acta Zool. Acad. Sci. Hung. 48:215–263.Google Scholar
  55. Shelton, A. M. and Badenes-Perez, F. R. 2006. Concepts and applications of trap cropping in pest management. Annu. Rev. Entomol. 51:285–308.PubMedCrossRefGoogle Scholar
  56. Sih, A. 1993. Effects of ecological interactions on forager diets: Competition, predation risk, parasitism, and prey behavior, pp 182–212, in R. N. Hughes (ed.). Diet Selection: An Interdisciplinary Approach to Foraging Behavior. Blackwell, Oxford.Google Scholar
  57. Singer, M. S., Bernays, E. A., and Carriere, Y. 2002. The interplay between nutrient balancing and toxin dilution in foraging by a generalist insect herbivore. Anim. Behav. 64:629–643.CrossRefGoogle Scholar
  58. Singer, M. S. and Stireman, J. O. 2001. How foraging tactics determine host-plant use by a polyphagous caterpillar. Oecologia 129:98–105.CrossRefGoogle Scholar
  59. Singer, M. S. and Stireman, J. O. 2003. Does anti-parasitoid defense explain host-plant selection by a polyphagous caterpillar? Oikos 100:554–562.CrossRefGoogle Scholar
  60. Sparks, A. N. 1979. A review of the biology of the fall armyworm. Fla. Entomol. 62:82–86.CrossRefGoogle Scholar
  61. Stamps, J. and Krishnan, V. V. 2005. Nonintuitive cue use in habitat selection. Ecology 86:2860–2867.CrossRefGoogle Scholar
  62. Stamps, J. A., Krishnan, V. V., and Reid, M. L. 2005. Search costs and habitat selection by dispersers. Ecology 86:510–518.CrossRefGoogle Scholar
  63. Thompson, J. N. 1988. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol. Exp. Appl. 47:3–14.CrossRefGoogle Scholar
  64. Tindall, K. V. and Stout, M. J. 2001. Plant-mediated interactions between the rice water weevil and fall armyworm in rice. Entomol. Exp. Appl. 101:9–17.CrossRefGoogle Scholar
  65. Turlings, T. C. and Tumlinson, J. H. 1992. Systemic release of chemical signals by herbivore-injured corn. Proc. Natl. Acad. Sci. U.S.A. 89:8399–8402.PubMedCrossRefGoogle Scholar
  66. Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking wasps. Science 250:1251–1253.PubMedCrossRefGoogle Scholar
  67. Turlings, T. J. C., Loughrin, J. H., McCall, P. J., Rose, U. S., Lewis, W. J., and Tumlinson, J. H. 1995. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc. Natl. Acad. Sci. U.S.A. 92:4169–4174.PubMedCrossRefGoogle Scholar
  68. Turlings, T. C. J., Lengwiler, U. B., Bernasconi, M. L., and Wechsler, D. 1998. Timing of induced volatile emissions in maize seedlings. Planta 207:146–152.CrossRefGoogle Scholar
  69. Van Dam, N. M., Hermenau, U., and Baldwin, I. T. 2001. Instar-specific sensitivity of specialist Manduca sexta larvae to induced defences in their host plant Nicotiana attenuata. Ecol. Entomol. 26:578–586.CrossRefGoogle Scholar
  70. Ward, S. A. 1987. Optimal habitat selection in time-limited dispersers. Am. Nat. 129:568–579.CrossRefGoogle Scholar
  71. Weatherston, I., Miller, D., and Dohse, L. 1985. Capillaries as controlled-release devices for insect pheromones and other volatile substances—a reevaluation. Part I. Kinetics and development of predictive model for glass capillaries. J. Chem. Ecol. 11:953–965.CrossRefGoogle Scholar
  72. Zalucki, M. P., Clarke, A. R., and Malcolm, S. B. 2002. Ecology and behavior of first instar larval Lepidoptera. Annu. Rev. Entomol. 47:361–393.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Mark J. Carroll
    • 1
  • Eric A. Schmelz
    • 1
  • Robert L. Meagher
    • 1
  • Peter E. A. Teal
    • 1
  1. 1.Center for Medical, Agricultural, and Veterinary Entomology, U.S. Department of AgricultureChemistry Research Unit, Agricultural Research ServiceGainesvilleUSA

Personalised recommendations