Journal of Chemical Ecology

, Volume 32, Issue 8, pp 1687–1702 | Cite as

Characterization of a Female-Produced Courtship Pheromone in the Parasitoid Nasonia vitripennis

Article

Abstract

Males of the parasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) show a characteristic courtship behavior. We demonstrate that male arrestment and key behavioral elements of the courtship sequence are mediated by a female-derived contact sex pheromone. Males were arrested on paper disks treated with female extracts but not on those treated with male extracts. Male responsiveness was influenced by the surface to which female extracts were applied. Extracts applied to an extracted beetle elytron arrested males more strongly than those applied to filter paper of comparable size. However, more complex behavioral elements, such as head nodding and copulation attempts, were shown only when extracts were applied to extracted male cadavers, suggesting that tactile or visual cues synergize the male response. The chemicals involved are stable, of low volatility, and nonpolar. Dead females arrested males and elicited courtship behavior for at least 8 d. Males showed no sign of attraction to live females at a distance of 3 cm in an olfactometer. Fractionation of female extracts demonstrated that the activity was exclusively located in the nonpolar fraction. Analysis of the active fraction by gas chromatography–mass spectrometry revealed that cuticular hydrocarbons with chain lengths between 25 and 37 carbon units were present. Comparison of hydrocarbon profiles from males and females showed qualitative and quantitative differences. These results suggest that sex-specific cuticular hydrocarbons are the key signals mediating the male courtship behavior in N. vitripennis.

Keywords

Parasitoid Nasonia vitripennis Pteromalidae Sex pheromone Courtship behavior Cuticular hydrocarbons 

Notes

Acknowledgments

The authors thank Lars Krogmann (University of Hamburg) for providing start-up individuals of N. vitripennis. Two anonymous reviewers gave helpful comments on an earlier version of the manuscript.

References

  1. Baeder, J. and King, B. H. 2004. Associative learning of color by males of the parasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). J. Insect Behav. 17:201–213.CrossRefGoogle Scholar
  2. Barras, R. 1960. The courtship behavior of Mormoniella vitripennis. Behaviour 15:185–209.CrossRefGoogle Scholar
  3. Blomquist, G. J., Tillmann-Wall, J. A., Guo, L., Quilici, P. G., and Schal, C. 1993. Hydrocarbon and hydrocarbon derived sex pheromones in insects: Biochemistry and endocrine regulation, pp. 317–351, in D. W. Stanley-Samuelson, and D. R. Nelson (eds). Insect Lipids—Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln, NB.Google Scholar
  4. Carlson, D. A., Bernier, U. R., and Sutton, B. D. 1998. Elution parameters from capillary GC for methyl-branched alkanes. J. Chem. Ecol. 24:1845–1865.CrossRefGoogle Scholar
  5. Carlson, D. A., Geden, C. J., and Bernier, U. R. 1999. Identification of pupal exuviae of Nasonia vitripennis and Muscidifurax raptorellus parasitoids using cuticular hydrocarbons. Biol. Control 15:97–106.CrossRefGoogle Scholar
  6. Dettner, K. and Liepert, C. 1994. Chemical mimicry and camouflage. Ann. Rev. Entomol. 39:129–154.CrossRefGoogle Scholar
  7. Eller, F. J., Bartelt, R. J., Jones, R. L., and Kulman, H. M. 1984. Ethyl (Z)-9-hexadecenoate a sex pheromone of Syndipnus rubiginosus, a sawfly parasitoid. J. Chem. Ecol. 10:291–300.CrossRefGoogle Scholar
  8. Field, S. A. and Keller, M. A., 1993. Alternative mating tactics and female mimicry as post-copulatory mate-guarding behaviour in the parasitic wasp Cotesia rubecula. Anim. Behav. 46:1183–1189.CrossRefGoogle Scholar
  9. Francis, G. W. and Velant, K. 1981. Alkylthiolation for the determination of double-bond position in linear alkenes. J. Chromatogr. 219:379–384.CrossRefGoogle Scholar
  10. Godfray, H. C. J. 1994. Parasitoids—Behavioral and Evolutionary Ecology. Monographs in Behavior and Ecology. Princeton University Press, Princeton, NJ.Google Scholar
  11. Howard, R. W. 1993. Cuticular hydrocarbons and chemical communication, pp. 179–226, in D. W. Stanley-Samuelson, and D. R. Nelson (eds). Insect Lipids—Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln, NB.Google Scholar
  12. Howard, R. W. and Blomquist, G. J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.PubMedCrossRefGoogle Scholar
  13. Jewett, D. K. and Carpenter, J. E. 1999. Chemically-mediated attraction of Ichneumon (=Pterocormus) promissorius (Hymenoptera: Ichneumonidae) males by females. Environ. Entomol. 28:551–556.Google Scholar
  14. Kainoh, Y. 1999. Parasitoids, pp. 383–404, in J. Hardie, and A. K. Minks (eds.). Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants. CABI Publishing, Wallingford, UK.Google Scholar
  15. King, B. H. and D'Souza, J. A. 2004. Effects of constrained females on offspring sex ratios of Nasonia vitripennis in relation to local mate competition theory. Can. J. Zool. 82:1969–1974.CrossRefGoogle Scholar
  16. King, P. E., Askew, R. R., and Sanger, C. 1969. The detection of parasitized hosts by males of Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) and some possible implications. Proc. R. Entomol. Soc. Lond., Ser. A 44:85–90.Google Scholar
  17. Lewis, W. J., Snow, J. W., and Jones, R. L. 1971. A pheromone trap for studying populations of Cardiochiles nigriceps, a parasite of Heliothis virescens. J. Econ. Entomol. 64:1417–1421.Google Scholar
  18. Lockey, K. H. 1988. Lipids of the insect cuticle: origin, composition and function. Comp. Biochem. Physiol., B. 89:595–645.CrossRefGoogle Scholar
  19. McNeil, J. N. and Brodeur, J. 1995. Pheromone-mediated mating in the aphid parasitoid, Aphidius nigripes (Hymenoptera: Aphididae). J. Chem. Ecol. 21:959–972.CrossRefGoogle Scholar
  20. Mohamed, M. A. and Coppel, H. C. 1987. Pheromonal basis of courtship behavior in two gypsy moth parasitoids: Brachymeria intermedia (Nees) and Brachymeria lasus (Walker) (Hymenoptera: Chalcididae). J. Chem. Ecol. 13:1099–1113.CrossRefGoogle Scholar
  21. Nelson, D. R. 1993. Methyl-branched lipids in insects, pp. 271–315, in D. W. Stanley-Samuelson and D. R. Nelson (eds.). Insect Lipids—Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln, NB.Google Scholar
  22. Quicke, D. L. J. 1997. Parasitic Wasps. Chapman and Hall, London.Google Scholar
  23. Reed, K. M. 1993. Cytogenetic analysis of the paternal sex-ratio chromosome of Nasonia vitripennis. Genome 36:157–161.PubMedCrossRefGoogle Scholar
  24. Rivers, D. B., Genco, M., and Sanchez, R. A. 1999. In vitro analysis of venom from the wasp Nasonia vitripennis: Susceptibility of different cell lines and venom-induced changes in plasma membrane permeability. In Vitro Cell. Dev., Anim. 35:102–110.CrossRefGoogle Scholar
  25. Ruther, J. and Steidle, J. L. M. 2000. Mites as matchmakers: Semiochemicals from host-associated mites attract both sexes of the parasitoid Lariophagus distinguendus. J. Chem. Ecol. 26:1205–1217.CrossRefGoogle Scholar
  26. Ruther, J., Homann, M., and Steidle, J. L. M. 2000. Female derived sex pheromone mediates courtship behaviour in the parasitoid Lariophagus distinguendus. Entomol. Exp. Appl. 96:265–274.CrossRefGoogle Scholar
  27. Sachs, L. 1992. Angewandte Statistik. Springer-Verlag, Berlin.Google Scholar
  28. Shu, S. and Jones, R. L. 1993. Evidence for a multicomponent sex pheromone in Eriborus terebrans (Gravenhorst) (Hym.: Ichneumonidae), a larval parasitoid of the European corn borer. J. Chem. Ecol. 19:2563–2576.CrossRefGoogle Scholar
  29. Simser, D. H. and Coppel, H. C. 1980. Female produced sex pheromone in Brachymeria lasus and B. intermedia (Hym.: Chalcididae). Entomophaga 25:373–380.CrossRefGoogle Scholar
  30. Singer, T. L. 1998. Roles of hydrocarbons in the recognition systems of insects. Am. Zool. 38:394–405.Google Scholar
  31. Steidle, J. L. M. and Schöller, M. 1997. Olfactory host location and learning in the granary weevil parasitoid Lariophagus distinguendus (Hymenoptera: Pteromalidae). J. Insect Behav. 10:331–342.CrossRefGoogle Scholar
  32. Steiner, S., Steidle, J. L. M., and Ruther, J. 2005. Female sex pheromone in immature insect males—A case of pre-emergence chemical mimicry? Behav. Ecol. Sociobiol. 58:111–120.CrossRefGoogle Scholar
  33. Sullivan, B. T. 2002. Evidence for a sex pheromone in bark beetle parasitoid Roptrocerus xylophagorum. J. Chem. Ecol. 28:1045–1063.PubMedCrossRefGoogle Scholar
  34. Swedenborg, P. D. and Jones, R. L. 1992a. Multicomponent sex pheromone in Macrocentrus grandii Goidanichi (Hymenoptera: Braconidae). J. Chem. Ecol. 18:1901–1912.CrossRefGoogle Scholar
  35. Swedenborg, P. D. and Jones, R. L. 1992b. (Z)-4-Tridecenal, a pheromonally active air oxidation product from a series of (Z,Z)-9,13-dienes in Macrocentrus grandii Goidanich (Hymenoptera: Braconidae). J. Chem. Ecol. 18:1913–1931.CrossRefGoogle Scholar
  36. Swedenborg, P. D., Jones, R. L., Zhou, H. Q., Shin, I., and Liu, H. W. 1994. Biological activity of (3R,5S,6R)- and (3S,5R,6S)-3,5-dimethyl-6-(methylethyl)-3,4,5,6-tetrahydropyran-2-one, a pheromone of Macrocentrus grandii (Goidanich) (Hymenoptera: Braconidae). J. Chem. Ecol. 20:3373–3380.CrossRefGoogle Scholar
  37. Syvertsen, T. C., Jackson, L. L., Blomquist, G. J., and Vinson, S. B. 1995. Alkadienes mediating courtship in the parasitoid Cardiochiles nigriceps (Hymenoptera: Braconidae). J. Chem. Ecol. 21:1971–1989.CrossRefGoogle Scholar
  38. Tagawa, J. 1977. Localization and histology of the female sex pheromone-producing gland in the parasitic wasp, Apanteles glomeratus. J. Insect Physiol. 23:49–56.PubMedCrossRefGoogle Scholar
  39. Takahashi, S. and Sugai, T. 1982. Mating behavior of the parasitoid wasp Tetrastichus hagenowii (Hymenoptera: Eulophidae). Entomol. Gen. 7:287–293.Google Scholar
  40. van den Assem, J. and Jachmann, F. 1982. The coevolution of receptivity signalling and body-size dimorphism in the Chalcidoidea. Behaviour 80:96–105.CrossRefGoogle Scholar
  41. van den Assem, J. and Jachmann, F. 1999. Changes in male perseverance in courtship and female readiness to mate in a strain of the parasitic wasp Nasonia vitripennis over a period of 20+ years. Neth. J. Zool. 49:125–137.CrossRefGoogle Scholar
  42. van den Assem, J. and Povel, G. D. E. 1973. Courtship behaviour of some Muscadifurax species (Hym.: Pteromalidae): a possible example of a recently evolved ethological isolating mechanism. Neth. J. Zool. 23:465–487.CrossRefGoogle Scholar
  43. van den Assem, J. and Vernel, C. 1979. Courtship behavior of Nasonia vitripennis (Hym.: Pteromalidae): observations and experiments on male readiness to assume copulatory behaviour. Behaviour 68:118–135.CrossRefGoogle Scholar
  44. van den Assem, J. and Werren, J. H. 1994. A comparison of the courtship and mating behavior of three species of Nasonia (Hymenoptera: Pteromalidae). J. Insect Behav. 7:53–66.CrossRefGoogle Scholar
  45. van den Assem, J., Gijswijt, M. J., and Nübel, B. K. 1980a. Observations on courtship and mating strategies in a few species of parasitic wasps (Chalcidoidea). Neth. J. Zool. 30:208–227.CrossRefGoogle Scholar
  46. van den Assem, J., Jachmann, F., and Simbollotti, P. 1980b. Courtship behaviour of Nasonia vitripennis (Hym., Pteromalidae): Some qualitative, experimental evidence for the role of pheromones. Behaviour 75:301–307.CrossRefGoogle Scholar
  47. Yoshida, S. 1978. Behaviour of males in relation to the female sex pheromone in the parasitoid wasp, Anisopteromalus calandrae (Hymenoptera: Pteromalidae). Entomol. Exp. Appl. 23:152–162.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Freie Universität BerlinInstitut für BiologieBerlinGermany

Personalised recommendations