Journal of Chemical Ecology

, Volume 32, Issue 6, pp 1247–1266

The Detoxification Limitation Hypothesis: Where Did it Come From and Where is it Going?

  • Karen J. Marsh
  • Ian R. Wallis
  • Rose L. Andrew
  • William J. Foley
Review Article

Abstract

The detoxification limitation hypothesis is firmly entrenched in the literature to explain various aspects of the interaction between herbivores and plant toxins. These include explanations for the existence of specialist and generalist herbivores and for the prevalence of each of these. The hypothesis suggests that the ability of mammalian herbivores to eliminate plant secondary metabolites (PSMs) largely determines which plants, and how much, they can eat. The value of the hypothesis is that it provides a clear framework for understanding how plant toxins might limit diet breadth. Thus, it is surprising, given its popularity, that there are few studies that provide experimental support either for or against the detoxification limitation hypothesis. There are two likely reasons for this. First, Freeland and Janzen did not formally propose the hypothesis, although it is implicit in their paper. Second, it is a difficult hypothesis to test, requiring an understanding of the metabolic pathways that lead to toxin elimination. Recent attempts to test the hypothesis appear promising. Results suggest that herbivores can recognize mounting saturation of a detoxification pathway and adjust their feeding accordingly to avoid intoxication. One strategy they use is to ingest a food containing a toxin that is metabolized by a different pathway. This demonstrates that careful selection of food plants is a key to existing in a chemically complex environment. As more studies characterize the detoxification products of PSMs, we will better understand how widespread this phenomenon is.

Keywords

Detoxification limitation hypothesis Mammalian herbivores Plant secondary metabolites Diet mixing Trichosurus vulpecula Chemical defense Food choice Foraging 

References

  1. Aldrich, C. G., Rhodes, M. T., Miner, J. L., Kerley, M. S., and Paterson, J. A. 1993. The effects of endophyte-infected tall fescue consumption and use of a dopamine antagonist on intake, digestibility, body temperature, and blood constituents in sheep. Anim. Sci. 71:158–163.Google Scholar
  2. Allen, C. T., Peden-Adams, M. M., Eudaly, J., and Keil, D. E. 2003. Subchronic exposure to ellagic acid impairs cytotoxic T-cell function and suppresses humoral immunity in mice. Immunopharm. Immunot. 25:409–422.CrossRefGoogle Scholar
  3. Alm Bergvall, U. and Leimar, O. 2005. Plant secondary compounds and the frequency of food types affect food choice by mammalian herbivores. Ecology 86:2450–2460.CrossRefGoogle Scholar
  4. Alm Bergvall, U., Rautio, P., Kesti, K., Tuomi, J., and Leimar, O. 2006. Associational effects of plant defences in relation to within- and between-patch food choice by a mammalian herbivore: neighbor contrast susceptibility and defense. Oecologia 147:253–260.CrossRefPubMedGoogle Scholar
  5. Amsel, L. P. and Levy, G. 1969. Drug biotransformation interactions in man. II. A pharmacokinetic study of the simultaneous conjugation of benzoic and salicylic acids with glycine. J. Pharm. Sci. 58:321–326.PubMedCrossRefGoogle Scholar
  6. Aranda, A., Sanchez-Vazquez, F. J., Zamora, S., and Madrid, J. A. 2000. Self-design of fish diets by means of self-feeders: validation of procedures. J. Physiol. Biochem. 56:155–166.PubMedCrossRefGoogle Scholar
  7. Atsatt, P. R. and O'Dowd, D. J. 1976. Plant defense guilds. Science 193:24–29.PubMedCrossRefGoogle Scholar
  8. Awaluddin, A. B. and McLean, S. 1985. Conjugation of benzoic acid in marsupials. Aust. J. Zool. 33:693–698.Google Scholar
  9. Baumgart, A., Schmidt, M., Schmitz, H.-J., and Schrenk, D. 2005. Natural furocoumarins as inducers and inhibitors of cytochrome P450 1A1 in rat hepatocytes. Biochem. Pharmacol. 69:657–667.CrossRefPubMedGoogle Scholar
  10. Behmer, S. T., Simpson, S. J., and Raubenheimer, D. 2002. Herbivore foraging in chemically heterogeneous environments: nutrients and secondary metabolites. Ecology 83:2489–2501.Google Scholar
  11. Boyle, R. and McLean, S. 2004. Constraint of feeding by chronic ingestion of 1,8-cineole in the brushtail possum (Trichosurus vulpecula). J. Chem. Ecol. 30:757–775.CrossRefPubMedGoogle Scholar
  12. Boyle, R., McLean, S., Foley, W. J., and Davies, N. W. 1999. Comparative metabolism of dietary terpene, p-cymene, in generalist and specialist folivorous marsupials. J. Chem. Ecol. 25:2109–2126.CrossRefGoogle Scholar
  13. Boyle, R., McLean, S., Foley, W., Davies, N. W., Peacock, E. J., and Moore, B. 2001. Metabolites of dietary 1,8-cineole in the male koala (Phascolarctos cinereus). Comp. Biochem. Physiol. C 129:385–395.Google Scholar
  14. Brenes-Arguedas, T. and Coley, P. D. 2005. Phenotypic variation and spatial structure of secondary chemistry in a natural population of a tropical tree species. Oikos 108:410–420.CrossRefGoogle Scholar
  15. Bridges, J. W., French, M. R., Smith, R. L., and Williams, R. T. 1970. The fate of benzoic acid in various species. Biochem. J. 118:47–51.PubMedGoogle Scholar
  16. Burritt, E. A. and Provenza, F. D. 2000. Role of toxins in intake of varied diets by sheep. J. Chem. Ecol. 26:1991–2005.CrossRefGoogle Scholar
  17. Cassini, M. H. 1994. Behavioral mechanisms of selection of diet components and their ecological implications in herbivorous mammals. J. Mammal. 75:733–740.CrossRefGoogle Scholar
  18. Clifton, P. G., Burton, M. J., and Sharp, C. 1987. Rapid loss of stimulus-specific satiety after consumption of a second food. Appetite 9:149–156.CrossRefPubMedGoogle Scholar
  19. Cork, S. J. 1981. Digestion and metabolism in the koala (Phascolarctos cinereus Goldfuss): an arboreal folivore. Ph.D. thesis. University of New South Wales, Australia.Google Scholar
  20. Covelo, F. and Gallardo, A. 2004. Green and senescent leaf phenolics showed spatial autocorrelation in a Quercus robur population in northwestern Spain. Plant Soil 259:267–276.CrossRefGoogle Scholar
  21. Dearing, M. D. and Cork, S. 1999. Role of detoxification of plant secondary compounds on diet breadth in a mammalian herbivore, Trichosurus vulpecula. J. Chem. Ecol. 25:1205–1219.CrossRefGoogle Scholar
  22. Dearing, M. D. and Schall, J. J. 1992. Testing models of optimal diet assembly by the generalist herbivorous lizard Cnemidophorus murinus. Ecology 73:845–858.CrossRefGoogle Scholar
  23. Dearing, M. D., Mangione, A. M., and Karasov, W. H. 2000. Diet breadth of mammalian herbivores: nutrient versus detoxification constraints. Oecologia 123:397–405.CrossRefGoogle Scholar
  24. Dearing, M. D., Foley, W. J., and McLean, S. 2005. The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. Annu. Rev. Ecolog. Evol. Syst. 36:169–189.CrossRefGoogle Scholar
  25. DeGabriel, J., Foley, W. J., and Wallis, I. R. 2002. The effect of excesses and deficiencies in amino acids on the feeding behavior of the common brushtail possum (Trichosurus vulpecula). J. Comp. Physiol. B 172:607–617.CrossRefPubMedGoogle Scholar
  26. DiBattista, D. and Sitzer, C. A. 1994. Dietary variety enhances meal size in golden hamsters. Physiol. Behav. 55:381–383.CrossRefPubMedGoogle Scholar
  27. Double, M. C., Peakall, R., Beck, N. R., and Cockburn, A. 2005. Dispersal, philopatry, and infidelity: dissecting local genetic structure in superb fairy-wrens (Malurus cyaneus). Evolution 59:625–635.PubMedGoogle Scholar
  28. Duncan, A. J., Ginane, C., Gordon, I. J., and Orskov, E. R. 2003. Why do herbivores select mixed diets?, pp. 195–208, in L. t′Mannetje, L. Ramírez-Avilés, C. A. Sandoval-Castro, and J. C. Ku-Vera (eds.). Matching Herbivore Nutrition to Ecosystems Biodiversity. Proceedings of the VI International Symposium on the Nutrition of Herbivores. Universidad Autónoma de Yucatán, Factad de Medicina Veterinaria y Zootecnia, Merida, Mexico.Google Scholar
  29. Foley, W. J., McLean, S., and Cork, S. J. 1995. Consequences of biotransformation of plant secondary metabolites on acid–base metabolism in mammals—a final common pathway. J. Chem. Ecol. 21:721–743.CrossRefGoogle Scholar
  30. Foley, W. J., Iason, G. R., and McArthur, C. 1999. Role of plant secondary metabolites in the nutritional ecology of mammalian herbivores: How far have we come in 25 years?, pp. 130–209, in H.-J. G. Jung and G. C. J. Fahey (eds.). Nutritional Ecology of Herbivores. Proceedings of the Vth International Symposium on the Nutrition of Herbivores. American Society of Animal Science, Savoy, USA.Google Scholar
  31. Freeland, W. J. 1991. Plant secondary metabolites: Biochemical coevolution with herbivores, pp. 61–81, in R. T. Palo and C. T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, FL, USA.Google Scholar
  32. Freeland, W. J. and Janzen, D. H. 1974. Strategies in herbivory by mammals: the role of plant secondary compounds. Am. Nat. 108:269–289.CrossRefGoogle Scholar
  33. Freeland, W. J. and Saladin, L. R. 1989. Choice of mixed diets by herbivores: the idiosyncratic effects of plant secondary compounds. Biochem. Syst. Ecol. 17:493–497.CrossRefGoogle Scholar
  34. Freeland, W. J. and Winter, J. W. 1975. Evolutionary consequences of eating: Trichosurus vulpecula (Marsupialia) and the genus Eucalyptus. J. Chem. Ecol. 1:439–455.CrossRefGoogle Scholar
  35. Freeland, W. J., Calcott, P. H., and Anderson, L. R. 1985. Tannins and saponin—interaction in herbivore diets. Biochem. Syst. Ecol. 13:189–193.CrossRefGoogle Scholar
  36. Galey, F. D., Holstege, D. M., Johnson, B. J., and Siemens, L. 1998. Toxicity and diagnosis of oleander (Nerium oleander) poisoning in livestock, pp. 215–219, in T. Garland and A. C. Barr (eds.). Toxic Plants and Other Natural Toxicants. CABI Publishing, Oxon, UK.Google Scholar
  37. Gardner, C. J., Armour, D. R., Beattie, D. T., Gale, J. D., Hawcock, A. B., Kilpatrick, G. J., Twissell, D. J., and Ward, P. 1996. GR205171: a novel antagonist with high affinity for the tachykinin NK1 receptor, and potent broad-spectrum anti-emetic activity. Regul. Pept. 65:45–53.CrossRefPubMedGoogle Scholar
  38. Gilardi, J. D., Duffey, S. S., Munn, C. A., and Tell, L. A. 1999. Biochemical functions of geophagy in parrots: detoxification of dietary toxins and cytoprotective effects. J. Chem. Ecol. 25:897–922.CrossRefGoogle Scholar
  39. Ginane, C., Baumont, R., Lassalas, J., and Petit, M. 2002. Feeding behavior and intake of heifers fed on hays of various quality, offered alone or in a choice situation. Anim. Res. 51:177–188.CrossRefGoogle Scholar
  40. Gous, R. M. and Swatson, H. K. 2000. Mixture experiments: a severe test of the ability of a broiler chicken to make the right choice. Br. Poult. Sci. 41:136–140.PubMedCrossRefGoogle Scholar
  41. Gregus, Z., Fekete, T., Varga, F., and Klaassen, C. D. 1993. Dependence of glycine conjugation on availability of glycine—role of the glycine cleavage system. Xenobiotica 23:141–153.PubMedCrossRefGoogle Scholar
  42. Gregus, Z., Fekete, T., Halaszi, E., and Klaassen, C. D. 1996. Does hepatic ATP depletion impair glycine conjugation in vivo? Drug Metab. Dispos. 24:1347–1354.PubMedGoogle Scholar
  43. Griffith, W. H. and Lewis, H. B. 1923. Studies in the synthesis of hippuric acid in the animal organism. V. The influence of amino-acids and related substances on the synthesis and rate of elimination of hippuric acid after the administration of benzoate. J. Biol. Chem. 57:1–24.Google Scholar
  44. Hagele, B. F. and Rowell-Rahier, M. 1999. Dietary mixing in three generalist herbivores: nutrient complementation or toxin dilution? Oecologia 119:521–533.CrossRefGoogle Scholar
  45. Harrington, R. A., Hamilton, C. W., Brogden, R. N., Linkewich, J. A., Romankiewicz, J. A., and Heel, R. C. 1983. Metoclopramide—an updated review of its pharmacological properties and clinical use. Drugs 25:451–494.PubMedCrossRefGoogle Scholar
  46. Hjalten, J., Daneall, K., and Lundberg, P. 1993. Herbivore avoidance by association: vole and hare utilization of woody-plants. Oikos 68:125–131.CrossRefGoogle Scholar
  47. Iason, G. R. 2005. The role of plant secondary metabolites in mammalian herbivory: ecological perspectives. Proc. Nutr. Soc. 64:1–9.CrossRefGoogle Scholar
  48. Iason, G. R. and Murray, A. H. 1996. The energy costs of ingestion of naturally occurring nontannin plant phenolics by sheep. Physiol. Zool. 69:532–546.Google Scholar
  49. Jakubas, W. J. and Mason, J. R. 1991. Role of avian trigeminal sensory system in detecting coniferyl benzoate, a plant allelochemical. J. Chem. Ecol. 17:2213–2221.CrossRefGoogle Scholar
  50. Klasing, K. C. and Calvert, C. C. 2000. The care and feeding of an immune system: an analysis of lysine needs, pp. 253–264, in G. E. Lobley, A. White and J. C. MacRae (eds.). Proceedings of the VIII International Symposium on Protein Metabolism and Nutrition. Wageningen University Press, Wageningen, Netherlands.Google Scholar
  51. Lawler, I. R., Foley, W. J., Pass, G. J., and Eschler, B. M. 1998. Administration of a 5HT3 receptor antagonist increases the intake of diets containing Eucalyptus secondary metabolites by marsupials. J. Comp. Physiol. B 168:611–618.CrossRefPubMedGoogle Scholar
  52. Lawler, I. R., Foley, W. J., and Eschler, B. M. 2000. Foliar concentration of a single toxin creates habitat patchiness for a marsupial folivore. Ecology 81:1327–1338.CrossRefGoogle Scholar
  53. Lee, K. P., Cory, J. S., Wilson, K., Raubenheimer, D., and Simpson, S. J. 2006. Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proc. R. Soc. Lond., B Biol. Sci. 273:823–829.CrossRefGoogle Scholar
  54. Lin, J. H. and Lu, A. Y. H. 2001. Interindividual variability in inhibition and induction of cytochrome P450 enzymes. Annu. Rev. Pharmacol. Toxicol. 41:535–567.CrossRefPubMedGoogle Scholar
  55. Lowry, J. B., Sumpter, E. A., McSweeney, C. S., Schlink, A. C., and Bowden, B. 1993. Phenolic acids in the fibre of some tropical grasses; effect on feed quality and their metabolism by sheep. Aust. J. Agric. Resour. 44:1123–1133.CrossRefGoogle Scholar
  56. Mangione, A. M., Dearing, M. D., and Karasov, W. H. 2000. Interpopulation differences in tolerance to creosote bush resin in desert woodrats (Neotoma lepida). Ecology 81:2067–2076.CrossRefGoogle Scholar
  57. Marsh, K. J., Foley, W. J., Cowling, A., and Wallis, I. R. 2003. Differential susceptibility to Eucalyptus secondary compounds explains feeding by the common ringtail (Pseudocheirus peregrinus) and common brushtail possum (Trichosurus vulpecula). J. Comp. Physiol. B 173:69–78.PubMedGoogle Scholar
  58. Marsh, K. J., Wallis, I. R., and Foley, W. J. 2005. Detoxification rates constrain feeding in common brushtail possums (Trichosurus vulpecula). Ecology 86:2946–2954.CrossRefGoogle Scholar
  59. Marsh, K. J., Wallis, I. R., McLean, S., Sorensen, J. S., and Foley, W. J. 2006. Conflicting demands on detoxification pathways influence how brushtail possums choose their diets. Ecology (in press).Google Scholar
  60. McLean, S. and Duncan, A. J. 2006. Pharmacological perspectives on the detoxification of plant secondary metabolites: implications for ingestive behavior of herbivores. J. Chem. Ecol. (this volume).Google Scholar
  61. McLean, S., Pass, G. J., Foley, W. J., Brandon, S., and Davies, N. W. 2001. Does excretion of secondary metabolites always involve a measurable metabolic cost? Fate of plant antifeedant salicin in common brushtail possum, Trichosurus vulpecula. J. Chem. Ecol. 27:1077–1089.CrossRefPubMedGoogle Scholar
  62. McLean, S., Brandon, S., Davies, N. W., Foley, W. J., and Muller, H. K. 2004. Jensenone: biological reactivity of a marsupial antifeedant from Eucalyptus. J. Chem. Ecol. 30:19–36.CrossRefPubMedGoogle Scholar
  63. Milchunas, D. G. and Noy-Meir, I. 2002. Grazing refuges, external avoidance of herbivory and plant diversity. Oikos 99:113–130.CrossRefGoogle Scholar
  64. Miura, K. and Ohsaki, N. 2004. Diet mixing and its effect on polyphagous grasshopper nymphs. Ecol. Res. 19:269–274.CrossRefGoogle Scholar
  65. Moore, B. D., Wallis, I. R., Palá-Paúl, J., Brophy J. J., Willis R. H., and Foley W. J. 2004. Antiherbivore chemistry of Eucalyptus—cues and deterrents for marsupial folivores. J. Chem. Ecol. 30:1743–1769.CrossRefPubMedGoogle Scholar
  66. Moore B. D., Foley W. J., Wallis I. R., Cowling A., and Handasyde K. A. 2005. Eucalyptus foliar chemistry explains selective feeding by koalas. Biol. Lett. 1:64–67.CrossRefPubMedGoogle Scholar
  67. Mulder G. J. 1995. Polymorphism in drug conjugation in man: is it a factor of concern in drug toxicity or efficacy? Eur. J. Pharm. Sci. 3:57–59.CrossRefGoogle Scholar
  68. Norberg A., Jones W. A., Hahn R. G., and Gabrielsson J. L. 2003. Role of variability in explaining ethanol pharmacokinetics—research and forensic applications. Clin. Pharmacokinet. 42:1–31.CrossRefPubMedGoogle Scholar
  69. Osawa R., Bird P. S., Harbrow D. J., Ogimoto K., and Seymour G. J. 1993. Microbiological studies of the intestinal microflora of the koala, Phascolarctos cinereus. 1. Colonization of the cecal wall by tannin–protein complex degrading enterobacteria. Aust. J. Zool. 41:599–609.CrossRefGoogle Scholar
  70. Pass G. J. and Foley W. J. 2000. Plant secondary metabolites as mammalian feeding deterrents: separating the effects of the taste of salicin from its post-ingestive consequences in the common brushtail possum (Trichosurus vulpecula). J. Comp. Physiol. B 170:185–192.CrossRefPubMedGoogle Scholar
  71. Pass G. J. and McLean S. 2002. Inhibition of the microsomal metabolism of 1,8-cineole in the common brushtail possum (Trichosurus vulpecula) by terpenes and other chemicals. Xenobiotica 32:1109–1126.CrossRefPubMedGoogle Scholar
  72. Pass G. J., McLean S., and Stupans I. 1999. Induction of xenobiotic metabolising enzymes in the common brushtail possum, Trichosurus vulpecula, by Eucalyptus terpenes. Comp. Biochem. Physiol. C 124:239–246.PubMedGoogle Scholar
  73. Pfister J. A., Provenza F. D., Manners G. D., Gardner D. R., and Ralphs M. H. 1997. Tall larkspur ingestion: Can cattle regulate intake below toxic levels? J. Chem. Ecol. 23:759–777.CrossRefGoogle Scholar
  74. Pfister J. A., Panter K. E., Gardner D. R., Stegelmeier B. L., Ralphs M. H., Molyneux R. J., and Lee S. T. 2001. Alkaloids as anti-quality factors in plants on western US rangelands. J. Range Manag. 54:447–461.CrossRefGoogle Scholar
  75. Provenza F. D. 1995. Postingestive feedback as an elementary determinant of food preference and intake in ruminants. J. Range Manag. 48:2–17.CrossRefGoogle Scholar
  76. Provenza F. D. 1996. Acquired aversions as the basis for varied diets of ruminants foraging on rangelands. J. Anim. Sci. 74:2010–2020.PubMedGoogle Scholar
  77. Provenza F. D., Pfister J. A., and Cheny C. D. 1992. Mechanisms of learning in diet selection with reference to phytotoxicosis in herbivores. J. Range Manag. 45:36–45.CrossRefGoogle Scholar
  78. Provenza F. D., Villalba J. J., Cheney C. D., and Werner S. J. 1998. Self-organization of foraging behavior: from simplicity to complexity without goals. Nutr. Res. Rev. 11:199–222.CrossRefPubMedGoogle Scholar
  79. Radominska-Pandaya A., Czernik P. J., and Little, J. M. 1999. Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab. Rev. 31:817–899.CrossRefPubMedGoogle Scholar
  80. Rhodes, V. A. and McDaniel, R. W. 2001. Nausea, vomiting, and retching: Complex problems in palliative care. CA Cancer J. Clin. 51:232–248.PubMedCrossRefGoogle Scholar
  81. Robbins, C. T., Hagerman, A. E., Austin, P. J., McArthur, C., and Hanley, T. A. 1991. Variation in mammalian physiological responses to a condensed tannin and its ecological implications. J. Mammal. 72:480–486.CrossRefGoogle Scholar
  82. Rogosic, J., Estell, R. E., Skobic, D., Martinovic, A., and Maric, S. 2006. Role of species diversity and secondary compound complementarity on diet selection of Mediterranean shrubs by goats. J. Chem. Ecol. (this volume).Google Scholar
  83. Rolls, B. J., Rowe, E. A., Rolls, E. T., Kingston, B., Megson, A., and Gunary, R. 1981. Variety in a meal enhances food intake in man. Physiol. Behav. 26:215–221.CrossRefPubMedGoogle Scholar
  84. Rousset, O. and Lepart, J. 2003. Neighbourhood effects on the risk of an unpalatable plant being grazed. Plant Ecol. 165:197–206.CrossRefGoogle Scholar
  85. Scott, L. L. and Provenza, F. D. 2000. Lambs fed protein or energy imbalanced diets forage in locations and on foods that rectify imbalances. Appl. Anim. Behav. Sci. 68:293–305.CrossRefPubMedGoogle Scholar
  86. Shariatmadari, F. and Forbes, J. M. 1993. Growth and food intake responses to diets of different protein contents and a choice between diets containing two concentrations of protein in broiler and layer strains of chicken. Br. Poult. Sci. 34:959–970.PubMedCrossRefGoogle Scholar
  87. Singer, M. S., Bernays, E. A., and Carriere, Y. 2002. The interplay between nutrient balancing and toxin dilution in foraging by a generalist insect herbivore. Anim. Behav. 64:629–643.CrossRefGoogle Scholar
  88. Singleton, V. L. and Kratzner, F. H. 1969. Toxicity and related physiological activity of phenolic substances of plant origin. J. Agric. Food Chem. 17:497–512.CrossRefGoogle Scholar
  89. Snyder, M. J. and Glendinning, J. I. 1996. Causal connection between detoxification enzyme activity and consumption of a toxic plant compound. J. Comp. Physiol. A 179:255–261.CrossRefPubMedGoogle Scholar
  90. Sorensen, J. S. and Dearing, M. D. 2003. Elimination of plant toxins by herbivorous woodrats: revisiting an explanation for dietary specialization in mammalian herbivores. Oecologia 134:88–94.CrossRefPubMedGoogle Scholar
  91. Sorensen, J. S., McLister, J. D., and Dearing, M. D. 2005. Plant secondary metabolites compromise the energy budgets of specialist and generalist mammalian herbivores. Ecology 86:125–139.CrossRefGoogle Scholar
  92. Stapley, J., Foley, W. J., Cunningham, R., and Eschler, B. 2000. How well can common brushtail possums regulate their intake of Eucalyptus toxins? J. Comp. Physiol. B 170:211–218.CrossRefPubMedGoogle Scholar
  93. Takeda, N., Morita, M., Hasegawa, S., Horii, A., Kubo, T., and Matsunaga, T. 1993. Neuropharmacology of motion sickness and Emesis—a review. Acta Oto-laryngol. 10–15.Google Scholar
  94. Tamási, V., Vereczkey, L., Falus, A., and Monostory, K. 2003. Some aspects of interindividual variations in the metabolism of xenobiotics. Inflamm. Res. 52:322–333.CrossRefPubMedGoogle Scholar
  95. Thomas, D. W., Samson, C., and Bergeron, J. 1988. Metabolic costs associated with the ingestion of plant phenolics by Microtus pennsylvanicus. J. Mammal. 69:512–515.CrossRefGoogle Scholar
  96. Treit, D., Spetch, M. L., and Deutsch, J. A. 1983. Variety in the flavor of food enhances eating in the rat: a controlled demonstration. Physiol. Behav. 30:207–211.CrossRefPubMedGoogle Scholar
  97. Tuomi, J. and Augner, M. 1993. Synergistic selection of unpalatability in plants. Evolution 47:668–672.CrossRefGoogle Scholar
  98. Villalba, J. J. and Provenza, F. D. 2005. Foraging in chemically diverse environments: energy, protein, and alternative foods influence ingestion of plant secondary metabolites by lambs. J. Chem. Ecol. 31:123–138.CrossRefPubMedGoogle Scholar
  99. Wallis, I. R., Watson, M. L., and Foley, W. J. 2002. Secondary metabolites in Eucalyptus melliodora: field distribution and laboratory feeding choices by a generalist herbivore, the common brushtail possum. Aust. J. Zool. 50:1–13.CrossRefGoogle Scholar
  100. Walton, K., Dorne, J. L., and Renwick, A. G. 2001. Uncertainty factors for chemical risk assessment: interspecies differences in glucuronidation. Food Chem. Toxicol. 39:1175–1190.CrossRefPubMedGoogle Scholar
  101. Wang, J. and Provenza, F. D. 1997. Dynamics of preference by sheep offered foods varying in flavours, nutrients and a toxin. J. Chem. Ecol. 23:275–288.CrossRefGoogle Scholar
  102. Waterlow, J. C. 2006. Protein Turnover. CABI Publishing, Wallingford, UK.Google Scholar
  103. White, R. G. and Lawler, J. P. 2002. Can methane suppression during digestion of woody and leafy browse compensate for energy costs of detoxification of plant secondary compounds? A test with muskoxen fed willows and birch. Comp. Biochem. Phys. A 133:849–859.CrossRefGoogle Scholar
  104. Wiggins, N. L., McArthur, C., McLean, S., and Boyle, R. 2003. Effects of two plant secondary metabolites, cineole and gallic acid, on nightly feeding patterns of the common brushtail possum. J. Chem. Ecol. 29:1447–1464.CrossRefPubMedGoogle Scholar
  105. Wiggins, N. L., McArthur, C., and Davies, N. W. 2006. Diet switching in a generalist mammalian folivore: fundamental to maximising intake. Oecologia 147:650–657.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Karen J. Marsh
    • 1
  • Ian R. Wallis
    • 1
  • Rose L. Andrew
    • 1
  • William J. Foley
    • 1
  1. 1.School of Botany and ZoologyAustralian National UniversityCanberraAustralia

Personalised recommendations