Journal of Chemical Ecology

, Volume 32, Issue 7, pp 1555–1564 | Cite as

Hexyl Decanoate, the First Trail Pheromone Compound Identified in a Stingless Bee, Trigona recursa

  • Stefan Jarau
  • Claudia M. Schulz
  • Michael Hrncir
  • Wittko Francke
  • Ronaldo Zucchi
  • Friedrich G. Barth
  • Manfred Ayasse


Foragers of many species of stingless bees guide their nestmates to food sources by means of scent trails deposited on solid substrates between the food and the nest. The corresponding trail pheromones are generally believed to be produced in the mandibular glands, although definitive experimental proof has never been provided. We tested the trail following behavior of recruits of Trigona recursa in field experiments with artificial scent trails branching off from natural scent trails of this stingless bee. First-time recruits (newcomers) did not follow these trails when they were laid with pure solvent or mandibular gland extract. However, they did follow trails made with labial gland extract. Chemical analyses of labial gland secretions revealed that hexyl decanoate was the dominant component (72.4 ± 1.9% of all volatiles). Newcomers were significantly attracted to artificial trails made with synthetic hexyl decanoate, demonstrating its key function in eliciting scent-following behavior. According to our experiments with T. recursa, the trail pheromone is produced in the labial glands and not in the mandibular glands. Hexyl decanoate is the first component of a trail pheromone identified and proved to be behaviorally active in stingless bees.


Stingless bees Trigona recursa Trail pheromone Labial gland secretion Hexyl decanoate 



We are very grateful to Sidnei Mateus and Geusa de Freitas for their help in locating the bee nests on the University Campus. This study was supported by grant P-14328 of the Austrian Science Foundation (FWF) to F.G.B. and by money made available by the “Fonds der Chemischen Industrie” to W.F.


  1. Aguilar, I., Fonseca, A., and Biesmeijer, J. C. 2005. Recruitment and communication of food source location in three species of stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie 36:313–324.CrossRefGoogle Scholar
  2. Alcock, J. 2001. Animal Behavior: An Evolutionary Approach, 7th edn. Sinauer Associates Inc., Sunderland, MA.Google Scholar
  3. Blum, M. S., Crewe, R. M., Kerr, W. E., Keith, L. H., Garrison, A. W., and Walker, M. M. 1970. Citral in stingless bees: isolation and functions in trail-laying and robbing. J. Insect Physiol. 16:1637–1648.CrossRefPubMedGoogle Scholar
  4. Cruz López, L., Patricio, E. F. L. R. A., Maile, R., and Morgan, E. D. 2002. Secretions of stingless bees: cephalic secretions of two Frieseomelitta species. J. Insect Physiol. 48:453–458.CrossRefPubMedGoogle Scholar
  5. da Cruz Landim, C. 1967. Estudo comparativo de algumas glândulas das abelhas (Hymenoptera, Apoidea) e respectivas implicações evolutivas. Arq. Zool. Estado São Paulo 15:177–290.Google Scholar
  6. Francke, W., Lübke, G., Schröder, W., Reckziegel, A., Imperatriz-Fonseca, V. L., Kleinert, A., Engels, E., Hartfelder, K., Radtke, R., and Engels, W. 2000. Identification of oxygen containing volatiles in cephalic secretions of workers of Brazilian stingless bees. J. Braz. Chem. Soc. 11:562–571.CrossRefGoogle Scholar
  7. Free, J. B. 1987. Pheromones of Social Bees. Cornell University Press, Ithaca, NY.Google Scholar
  8. Hölldobler, B. and Wilson, E. O. 1990. The Ants. Springer Verlag, Berlin Heidelberg New York.Google Scholar
  9. Jarau, S., Hrncir, M., Schmidt, V. M., Zucchi, R., and Barth, F. G. 2003. Effectiveness of recruitment behavior in stingless bees (Apidae, Meliponini). Insectes Soc. 50:365–374.CrossRefGoogle Scholar
  10. Jarau, S., Hrncir, M., Zucchi, R., and Barth, F. G. 2004. A stingless bee uses labial gland secretions for scent trail communication (Trigona recursa Smith 1863). J. Comp. Physiol. A 190:233–239.CrossRefGoogle Scholar
  11. Johnson, L. K. 1987. Communication of food source location by the stingless bee Trigona fulviventris, pp. 698–699, in J. Eder and H. Rembold (eds.). Chemistry and Biology of Social Insects. Verlag Peperny, Munich.Google Scholar
  12. Keeling, C. I., Plettner, E., and Slessor, K. N. 2004. Hymenopteran semiochemicals. Top. Curr. Chem. 239:133–177.CrossRefGoogle Scholar
  13. Kerr, W. E. 1969. Some aspects of the evolution of social bees (Apidae). Evol. Biol. 3:119–175.Google Scholar
  14. Kerr, W. E. and da Costa Cruz, C. 1961. Funções diferentes tomadas pela glândula mandibular na evolução das abelhas em geral e em “Trigona (Oxytrigona) tataira” em especial. Rev. Bras. Biol. 21:1–16.Google Scholar
  15. Kerr, W. E., Ferreira, A., and de Mattos, N. S. 1963. Communication among stingless bees—additional data (Hymenoptera: Apidae). J. N. Y. Entomol. Soc. 71:80–90.Google Scholar
  16. Lindauer, M. and Kerr, W. E. 1958. Die gegenseitige Verständigung bei den stachellosen Bienen. Z. Vgl. Physiol. 41:405–434.CrossRefGoogle Scholar
  17. Lindauer, M. and Kerr, W. E. 1960. Communication between the workers of stingless bees. Bee World 41:29–41, 65–71.Google Scholar
  18. McLafferty, F. W. and Stauffer, D. R. (eds.) 1989. The Wiley/NBS Registry of Mass Spectral Data. Wiley Interscience, New York.Google Scholar
  19. Michener, C. D. 1974. The Social Behavior of the Bees: A Comparative Study. Belknap Press, Cambridge, MA.Google Scholar
  20. Moore, B. P. 1974. Pheromones in the termite societies, pp. 250–266, in M. C. Birch (ed.). Pheromones. North-Holland Publishing Company, Amsterdam.Google Scholar
  21. Morgan, E. D. 1990. Insect trail pheromones: a perspective of progress, pp. 259–270, in A. R. McCaffery and I. D. Wilson (eds.). Chromatography and Isolation of Insect Hormones and Pheromones. Plenum Press, New York.Google Scholar
  22. Nieh, J. C., Contrera, F. A. L., and Nogueira-Neto, P. 2003. Pulsed mass recruitment by a stingless bee, Trigona hyalinata. Proc. R. Soc. Lond. B 270:2191–2196.CrossRefGoogle Scholar
  23. Nieh, J. C., Contrera, F. A. L., Yoon, R. R., Barreto, L. S., and Imperatriz-Fonseca, V. L. 2004. Polarized short odor-trail recruitment communication by a stingless bee, Trigona spinipes. Behav. Ecol. Sociobiol. 56:435–448.CrossRefGoogle Scholar
  24. Roubik, D. W. 1989. Ecology and Natural History of Tropical Bees. Cambridge University Press, Cambridge.Google Scholar
  25. Sanchéz, D., Nieh, J. C., Hénaut, Y., Cruz, L., and Vandame, R. 2004. High precision during food recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona mexicana (Apidae, Meliponini). Naturwissenschaften 91:346–349.PubMedCrossRefGoogle Scholar
  26. Schmidt, V. M., Zucchi, R., and Barth, F. G. 2003. A stingless bee marks the feeding site in addition to the scent path (Scaptotrigona aff. depilis Moure 1942). Apidologie 34:237–248.CrossRefGoogle Scholar
  27. Snodgrass, R. E. 1956. Anatomy of the Honey Bee. Comstock Publishing Association, Ithaca, NY.Google Scholar
  28. Wilson, E. O. 1971. The Insect Societies. Belknap Press, Cambridge, MA.Google Scholar
  29. Wyatt, T. D. 2003. Pheromones and Animal Behaviour. Communication by Smell and Taste. Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Stefan Jarau
    • 1
  • Claudia M. Schulz
    • 2
  • Michael Hrncir
    • 3
  • Wittko Francke
    • 2
  • Ronaldo Zucchi
    • 4
  • Friedrich G. Barth
    • 3
  • Manfred Ayasse
    • 1
  1. 1.Department of Experimental EcologyUniversity of UlmUlmGermany
  2. 2.Institute of Organic ChemistryUniversity of HamburgHamburgGermany
  3. 3.Department for Neurobiology and Behavioral SciencesUniversity of ViennaViennaAustria
  4. 4.Department of Biology, FFCLRPUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations