Journal of Chemical Ecology

, Volume 32, Issue 5, pp 943–957 | Cite as

Antifeedants in the Feces of the Pine Weevil Hylobius abietis: Identification and Biological Activity

  • Anna-Karin Borg-Karlson
  • Göran Nordlander
  • Anoma Mudalige
  • Henrik Nordenhem
  • C. Rikard Unelius
Article

Abstract

Egg-laying females of the pine weevil, Hylobius abietis (L.), regularly deposit feces adjacent to each egg. Egg cavities are gnawed in the bark of roots of recently dead conifer trees. After egg deposition, the cavity is sealed by feces and a plug of bark fragments. Root bark containing egg cavities with feces is avoided as food by pine weevils, which indicates the presence of natural antifeedants. Here we present the first results of the isolation and chemical analyses of antifeedant compounds in the feces of H. abietis. In feeding bioassays, methanol extracts of the feces revealed strong antifeedant properties. Methanol extracts were fractionated by medium-pressure liquid chromatography and the antifeedant effects were mainly found in the fractions of highest polarity. Volatile compounds in the active fractions were identified by gas chromatography–mass spectrometry (GC–MS) and the nonvolatile compounds were characterized by pyrolysis–GC–MS. Based on mass spectra, a number of compounds with various chemical structures were selected to be tested for their antifeedant properties. Antifeedant effects were found among compounds apparently originating from lignin: e.g., a methylanisol, guaiacol, veratrol, dihydroxybenzenes, and dihydroconiferyl alcohol. A weak effect by fatty acid derivatives was found. The types of naturally occurring antifeedant compounds identified in this study may become useful for the protection of planted conifer seedlings against damage by H. abietis.

Keywords

Bioassay Curculionidae Deterrent Dihydroconiferyl alcohol Dihydroxybenzene Faeces Feeding Fractionation GC–MS MPLC Oviposition Protection 

References

  1. Anderson, P. 2002. Oviposition pheromones in herbivorous and carnivorous insects, pp. 235–263, in M. Hilker and T. Meiners (eds.). Chemoecology of Insect Eggs and Egg Deposition. Blackwell Publishing, Berlin.Google Scholar
  2. Anderson, P., Hilker, M., Hansson, B. S., Bombosch, S., Klein, B., and Schildknecht, H. 1993. Oviposition deterring components of larval frass of Spodoptera littoralis (Boisd) (Lepidoptera: Noctuidae). A behavioural and electrophysiological evaluation. J. Insect Physiol. 39:129–137.CrossRefGoogle Scholar
  3. Blaney, W. M., Simmonds, M. S. J., Evans, S. V., and Fellows, L. E. 1984. The role of the secondary plant compound 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine as a feeding inhibitor for insects. Entomol. Exp. Appl. 36:209–216.CrossRefGoogle Scholar
  4. Blum, M. S. and Hilker, M. 2002. Chemical protection of insect eggs, pp. 61–90, in M. Hilker and T. Meiners (eds.). Chemoecology of Insect Eggs and Egg Deposition. Blackwell Publishing, Berlin.Google Scholar
  5. Borg-Karlson, A.-K. 1990. Behavioural and ethological studies of pollination in the genus Ophrys L. (Orchidaceae). Review no. 52. Phytochemistry 29:1359–1387.CrossRefGoogle Scholar
  6. Bratt, K., Sunnerheim, K., Nordenhem, H., Nordlander, G., and Långström, B. 2001. Pine weevil (Hylobius abietis) antifeedants from lodgepole pine (Pinus contorta). J. Chem. Ecol. 27:2253–2262.CrossRefPubMedGoogle Scholar
  7. Bylund, H., Nordlander, G., and Nordenhem, H. 2004. Feeding and oviposition rates in the pine weevil Hylobius abietis (Coleoptera: Curculionidae). Bull. Entomol. Res. 94:307–317.CrossRefPubMedGoogle Scholar
  8. Day, K. R., Nordlander, G., Kenis, M., and Halldórson, G. 2004. General biology and life cycles of bark weevils, pp.331–349, in F. Lieutier, K. R. Day, A. Battisti, J.-C. Grégoire, and H. F. Evans (eds.). Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  9. Dillon, R. J. and Dillon, V. M. 2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49:71–92.CrossRefPubMedGoogle Scholar
  10. Fuchs, G. 1912. Generationsfragen bei Rüsselkäfern. Naturwiss. Z. Forst-Landwirtsch. 10:43–54.Google Scholar
  11. Hardell, H.-L. and Nilvebrandt, N.-O. 1996. Analytical pyrolysis of spruce milled wood lignins in the presence of tetramethylammonium hydroxide. Nordic Pulp Pap. Res. J. 11(2):121–126.CrossRefGoogle Scholar
  12. Harmatha, J. and Nawrot, J. 2002. Insect feeding deterrent activity of lignans and related phenylpropanoids with a methylenedioxyphenyl (piperonyl) structure moiety. Entomol. Exp. Appl. 104:51–60.CrossRefGoogle Scholar
  13. Hilker, M. and Meiners T. (eds.). 2002. Chemoecology of Insect Eggs and Egg Deposition, Blackwell Publishing, Berlin, 390 pp.Google Scholar
  14. KEGG: Kyoto Encyclopedia of Genes and Genomes. 2005. http://www.genome.jp/kegg/pathway.html.Google Scholar
  15. Langor, D. W. and Williams, D. J. M. 1998. Life cycle and mortality of Pissodes terminalis (Coleoptera: Curculionidae) in lodgepole pine. Can. Entomol. 130:387–397.CrossRefGoogle Scholar
  16. Långström, B. and Day, K. R. 2004. Damage, control and management of weevil pests, especially Hylobius abietis, pp.415–444, in F. Lieutier, K. R. Day, A. Battisti, J.-C. Grégoire, and H. F. Evans (eds.). Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  17. Legrand, S., Nordlander, G., Nordenhem, H., Borg-Karlson, A.-K., and Unelius, C. R. 2004. Hydroxy-methoxybenzoic methyl esters: synthesis and antifeedant activity on the pine weevil, Hylobius abietis. Z. Naturforsch. 59b:829–835.Google Scholar
  18. Lindgren, B. S., Nordlander, G, and Birgersson, G. 1996. Feeding deterrence of verbenone to the pine weevil, Hylobius abietis (L.) (Col., Curculionidae). J. Appl. Entomol. 120:397–403.CrossRefGoogle Scholar
  19. MacLaughlan, L. E. and Borden, J. H. 1995. Discrimination between shoots with and without oviposition by Pissodes terminalis Hopping (Coleoptera: Curculionidae). Can. Entomol. 127:267–269.Google Scholar
  20. Månsson, P. E., Eriksson, C., and Sjödin, K. 2005. Antifeedants against Hylobius abietis pine weevils: an active compound in extract of bark of Tilia cordata linden. J. Chem. Ecol. 31:989–1001.CrossRefPubMedGoogle Scholar
  21. Marvaldi, A. E., Sequeira, A. S., O'Brien, C. W., and Farrell, B. D. 2002. Molecular and morphological phylogenetics of weevils (Coleoptera: Curculionidea): do niche shifts accompany diversification? Syst. Biol. 51:761–785.CrossRefPubMedGoogle Scholar
  22. Mustaparta, H. 1975. Responses of single olfactory cells in the pine weevil Hylobiusabietis L. (Col.: Curculionidae). J. Comp. Physiol. 97:271–290.CrossRefGoogle Scholar
  23. Nordlander, G. 1990. Limonene inhibits attraction to α-pinene in the pine weevils Hylobius abietis and H. pinastri. J. Chem. Ecol. 16:1307–1320.CrossRefGoogle Scholar
  24. Nordlander, G. 1991. Host finding in the pine weevil Hylobius abietis: effects of conifer volatiles and added limonene. Entomol. Exp. Appl. 59:229–237.CrossRefGoogle Scholar
  25. Nordlander, G., Eidmann, H. H., Jacobsson, U., Nordenhem, H., and Sjödin, K. 1986. Orientation of the pine weevil Hylobius abietis to underground sources of host volatiles. Entomol. Exp. Appl. 41:91–100.CrossRefGoogle Scholar
  26. Nordlander, G., Nordenhem, H., and Bylund, H. 1997. Oviposition patterns of the pine weevil Hylobius abietis. Entomol. Exp. Appl. 85:1–9.CrossRefGoogle Scholar
  27. Nordlander, G., Örlander, G., Petersson, M., Bylund, H., Wallertz, K., Nordenhem, H., and Långström, B. 2000. Pine weevil control without insecticides—final report of a research program [in Swedish]. Sveriges lantbruksuniversitet, Asa försökspark, Report 1, 77 pp.Google Scholar
  28. Nordlander, G., Bylund, H., and Björklund, N. 2005. Soil type and micro-topography influencing feeding above and below ground by the pine weevil Hylobius abietis (L.). Agric. For. Entomol. 7:107–113.CrossRefGoogle Scholar
  29. Örlander, G., Nordlander, G., Wallertz, K., and Nordenhem, H. 2000. Feeding in the crowns of Scots pine trees by the pine weevil Hylobius abietis. Scand. J. For. Res. 15:194–201.CrossRefGoogle Scholar
  30. Rösecke, J. and König, W. A. 2000. Odorous compounds from the fungus Gloeophyllum odoratum. Flavour Fragr. J. 15:315–319.CrossRefGoogle Scholar
  31. Rösecke, J., Pietsch, M., and König, W. A. 2000. Volatile constituents of wood-rotting basidiomycetes. Phytochemistry 54:747–750.CrossRefPubMedGoogle Scholar
  32. Schal, C., Zurek, L., Nalyanya, G., Roelofs, W. L., and Zhang, A. 2002. Aggregation factors of the German cockroach are produced by gut microbial symbionts. ISCE Conference in Hamburg 2002.Google Scholar
  33. Schlyter, F. 2004. Semiochemicals in the life of bark feeding weevils, pp. 351–364, in F. Lieutier, K. R. Day, A. Battisti, J.-C. Grégoire, and H. F. Evans (eds.). Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  34. Stansly, P. A. and Cate, J. R. 1984. Discrimination by ovipositing boll weevils (Coleoptera: Curculionidae) against previously infested Hampea (Malvaceae) flower buds. Environ. Entomol. 13:1361–1365.Google Scholar
  35. Unelius, C. R., Nordlander, G., Nordenhem, H., Hellqvist, C., Legrand, S., and Borg-Karlson, A.-K. In press. Structure–activity relationships of benzoic acid derivatives as antifeedants for the pine weevil, Hylobius abietis. J. Chem. Ecol. Submitted.Google Scholar
  36. Wallace, D. R. and Sullivan, C. R. 1985. The white pine weevil, Pissodes strobi (Coleoptera: Curculionidae): a review emphasizing behaviour and development in relation to physical factors. Proc. Entomol. Soc. Ont. Suppl. 116:39–62.Google Scholar
  37. Wen, X., Kuang, Y., Shi, M., Li, H., Luo, Y., and Deng, R. 2004. Biology of Hylobitelus xiaoi (Coleoptera: Curculionidae), a new pest of slash pine, Pinus elliottii. J. Econ. Entomol. 97:1958–1964.PubMedCrossRefGoogle Scholar
  38. Wibe, A., Borg-Karlson, A.-B., Norin, T., and Mustaparta, H. 1997. Identification of plant volatiles activating single receptor neurons in the pine weevil (Hylobius abietis). J. Comp. Physiol. A 180:585–595.CrossRefGoogle Scholar
  39. Wibe, A., Borg-Karlson, A.-K., Persson, M., Norin, T., and Mustaparta, H. 1998. Enantiomeric composition of monoterpene hydrocarbons in some conifers and receptor neuron discrimination of alpha-pinene and limonene enantiomers in the pine weevil, Hylobius abietis. J. Chem. Ecol. 24:273–287.CrossRefGoogle Scholar
  40. Wibe, A., Roten, Ø., Borg-Karlson, A.-K., and Mustaparta, H. 2001. Methylanisol, a non-host volatile, elicit large electroantennograms in the pine weevil (Hylobius abietis) and prevail over α-pinene in a laboratory bioassay. ISCE Conference 2001.Google Scholar
  41. Zhang, H., Ye, H., Haack, R. A., and Langor, D. W. 2004. Biology of Pissodes yunnanensis (Coleoptera: Curculionidae), a pest of Yunnan pine in southwestern China. Can. Entomol. 136:719–726.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Anna-Karin Borg-Karlson
    • 1
  • Göran Nordlander
    • 2
  • Anoma Mudalige
    • 1
  • Henrik Nordenhem
    • 2
  • C. Rikard Unelius
    • 3
  1. 1.Department of Chemistry, Organic Chemistry, Ecological Chemistry Group, KTHStockholmSweden
  2. 2.Department of EntomologySwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Department of Chemistry and Biomedical SciencesUniversity of KalmarKalmarSweden

Personalised recommendations