Advertisement

Cuticular Hydrocarbon Composition Reflects Genetic Relationship Among Colonies of the Introduced Termite Reticulitermes santonensis Feytaud

  • Stéphanie Dronnet
  • Caroline Lohou
  • Jean-Philippe Christides
  • Anne-Geneviève Bagnères
Article

Abstract

Nestmate recognition plays a key role in kin selection to maintain colony integrity in social insects. Previous studies have demonstrated that nestmate recognition is dependent on detection of cuticular hydrocarbons. However, the absence of intraspecific aggression between some colonies of Isoptera and social Hymenoptera questions whether kin recognition must occur in social insects. The purpose of this study was to determine if cuticular hydrocarbon similarity and high genetic relatedness could explain the lack of intraspecific aggression among and within colonies of the introduced subterranean termite Reticulitermes santonensis. We performed both GC analysis of cuticular hydrocarbons and genotyping by using 10 DNA microsatellite loci on the same 10 workers from each of 14 parisian colonies. Multivariate analyses demonstrated correspondence between cuticular hydrocarbon patterns and genetic variation. By using a redundancy analysis combining chemical and genetic data, we found that a few hydrocarbons (mainly short vs. long chains; saturated vs. unsaturated alkanes) were associated with most genetic variation. We also found a strong positive correlation between chemical and genetic distances between colonies, thus providing evidence of a genetic basis for cuticular hydrocarbon variation. However, genetic distance did not account for all chemical variation, thus suggesting that some hydrocarbon variation was environmentally derived. Investigation at the intracolony level indicated that cuticular hydrocarbons did not depend on colony social structure. Based on our findings, we speculate that the absence of intraspecific aggression in R. santonensis may result from a loss of diversity in genetically derived recognition compounds in this species that presumably descended from R. flavipes populations imported from North America.

Key words

Cuticular hydrocarbons Microsatellite DNA Subterranean termite Reticulitermes santonensis Multivariate analyses Social structure 

Notes

Acknowledgements

We are grateful to the “Section de Lutte contre les termites” (SMASH, Paris) and the pest control operators (HIE Piguy, Hygiène Office, Techmohygiène & APBM Bruant) for kindly providing some samples. We thank P. Legendre (Université de Montréal) for advice on the published material on redundancy analysis, and K. A. Copren, C. Husseneder, M. Kaib, N. D. Tsutsui, and E. L. Vargo for comments on this manuscript, and we thank A. Corsini for help in improving the English of the manuscript. This study was supported by a contract between the Centre de la Recherche Scientifique (CNRS) and the City of Paris (Direction des Parcs, Jardins et Espaces verts).

References

  1. Austin, J. W., Szalanski, A. L., Scheffrahn, R. H., Messenger, M. T., Dronnet, S., and Bagnères A.-G. 2005. Genetic evidence for the synonymy of two Reticulitermes species: Reticulitermes flavipes (Kollar) and Reticulitermes santonensis (Feytaud). Ann. Entomol. Soc. Am. 98:395–401.CrossRefGoogle Scholar
  2. Bagnères, A.-G., Clément, J.-C., Blum, M. S., Severson, R. F., Joulie, C., and Lange, C. 1990. Cuticular hydrocarbons and defensive compounds of Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud): Polymorphism and chemotaxonomy. J. Chem. Ecol. 16:3213–3244.CrossRefGoogle Scholar
  3. Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., and Bonhomme, F. 1996–2001. genetix 4.04 Logiciel sous windows TM pour la Génétique des Populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier.Google Scholar
  4. Beye, M., Neumann, P., Chapuisat, M., Pamilo, P., and Moritz, R. F. A. 1998. Nestmate recognition and the genetic relatedness of nests in the ant Formica pratensis. Behav. Ecol. Sociobiol. 43:67–72.CrossRefGoogle Scholar
  5. Breed, M. D. and Bennett, G. W. 1987. Kin recognition in highly eusocial insects, pp. 243–285, in D. J. C. Fletcher, and C. D. Michener (eds.). Kin Recognition in Animals. Wiley and Sons.Google Scholar
  6. Bulmer, M. S. and Traniello, J. F. A. 2002. Lack of aggression and spatial association of colony members in Reticulitermes flavipes. J. Insect Behav. 15:121–126.CrossRefGoogle Scholar
  7. Carlin, N. F. and Hölldobler, B. 1986. The kin recognition system of carpenter ants (Camponotus spp.). I. Hierarchical cues in small colonies. Behav. Ecol. Sociobiol. 19:123–134.CrossRefGoogle Scholar
  8. Cavalli-Sforza, L. L. and Edwards, A. W. F. 1967. Phylogenetic analysis: Models and estimation procedures. Am. J. Hum. Genet. 19:233–257.PubMedGoogle Scholar
  9. Clément, J.-L. 1986. Open and closed societies in Reticulitermes termites (Isoptera, Rhinotermitidae): Geographic and seasonal variations. Sociobiology 11:311–323.Google Scholar
  10. Clément, J.-L. and Bagnères, A.-G. 1998. Nestmate recognition in termites, pp. 126–155, in R. K. Vander Meer, M. D. Breed, K. E. Espelie, and M. L. Winston (eds.). Pheromone Communication in Social Insects. Ants, Wasps, Bees, and Termites. Westview Press, Boulder, CO.Google Scholar
  11. Cornelius, M. L. and Osbrink, W. L. 2003. Agonistic interactions between colonies of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in New Orleans, Louisiana. Environ. Entomol. 32:1002–1009.CrossRefGoogle Scholar
  12. Dronnet, S., Bagnères, A.-G., Juba, T. R., and Vargo, E. L. 2004. Polymorphic microsatellite loci in the European subterranean termite, Reticulitermes santonensis Feytaud. Mol. Ecol. Notes 4:127–129.CrossRefGoogle Scholar
  13. Dronnet, S., Chapuisat, M., Vargo, E. L., Lohou, C., and Bagnères, A.-G. 2005a. Genetic analysis of the breeding system of an invasive subterranean termite, Reticulitermes santonensis, in urban and natural habitats. Mol. Ecol. 14:1311–1320.CrossRefPubMedGoogle Scholar
  14. Dronnet, S., Simon, X., Verhaeghe, J.-C., Rasmont, P., and Errard, C. 2005b. Bumblebee inquilinism in Bombus (Fernaldaepsithyrus) sylvestris Lepeletier (Hymenoptera, Apidae): Behavioural and chemical analyses of host–parasite interactions. Apidologie 36:59–70.CrossRefGoogle Scholar
  15. Felsenstein, J., 1993. Phylogeny Inference Package (PHYLIP), Version 3.5c University of Washington, Seattle.Google Scholar
  16. Fitch, W. M. and Margoliash, E. 1967. Construction of phylogenetic trees. Science 155:279–284.PubMedCrossRefGoogle Scholar
  17. Florane, C. B., Bland, J. M., Husseneder, C., and Raina, A. K. 2004. Diet-mediated inter-colonial aggression in the Formosan subterranean termite Coptotermes formosanus. J. Chem. Ecol. 30:2559–2574.CrossRefPubMedGoogle Scholar
  18. Giraud, T., Pedersen, J. S., and Keller, L. 2002. Evolution of supercolonies: The Argentine ants of southern Europe. Proc. Natl. Acad. Sci. USA 99:6075–6079.CrossRefPubMedGoogle Scholar
  19. Goudet, J. 1995. FSTAT (version 1.2): A computer program to calculate F-statistics. J. Heredity 86:485–486.Google Scholar
  20. Grace, J. K. 1996. Absence of overt agonistic behavior in a northern population of Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 28:103–110.Google Scholar
  21. Hamilton, W. D. 1964. The genetic evolution of social behaviour. J. Theor. Biol. 71:1–52.CrossRefGoogle Scholar
  22. Haverty, M. I. and Thorne, B. L. 1989. Agonistic behavior correlated with hydrocarbon phenotypes in dampwood termites, Zootermopsis (Isoptera: Termopsidae). J. Insect Behav. 2:523–543.CrossRefGoogle Scholar
  23. Howard, R. W. and Blomquist, G. J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.CrossRefPubMedGoogle Scholar
  24. Husseneder, C. and Grace, J. K. 2001. Evaluation of DNA fingerprinting, aggression tests, and morphometry as tools for colony delineation of the Formosan subterranean termite. J. Insect Behav. 14:173–186.CrossRefGoogle Scholar
  25. Husseneder, C., Kaib, M., Epplen, C., Epplen, J. T., and Brandl, R. 1997. Small-scale population structure of the termite Schedorhinotermes lamanianus: Aggression modulated by genetic and environmental factors. Mitt. Dtsch. Ges. Allg. Angew. Entomol. 11:183–187.Google Scholar
  26. Husseneder, C., Brandl, R., Epplen, C., Epplen, J. T., and Kaib, M. 1998. Variation between and within colonies in the termite: Morphology, genomic DNA, and behaviour. Mol. Ecol. 7:983–990.CrossRefGoogle Scholar
  27. Kaib, M., Jmhasly, P., Wilfert, L., Durka, W., Franke, S., Francke, W., Leuthold, R. H., and Brandl, R. 2004. Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus. J. Chem. Ecol. 30:365–385.CrossRefPubMedGoogle Scholar
  28. Le Breton, J., Delabie, J. H. C., Chazeau, J., Dejean, A., and Jourdan, H. 2004. Experimental evidence of large-scale unicoloniality in the tramp ant Wasmannia auropunctata (Roger). J. Insect Behav. 17:263–271.CrossRefGoogle Scholar
  29. Legendre, P. and Legendre, L. 1998. Numerical Ecology. 2nd English ed. Elsevier, Amsterdam.Google Scholar
  30. Leponce, M., Roisin, Y., and Pasteels, J. 1996. Intraspecific interactions in a community of arboreal nesting termites (Isoptera: Termitidae). J. Insect Behav. 9:799–817.CrossRefGoogle Scholar
  31. Lipkovich, I. and Smith, E. P. 2002. Biplot and Singular Value Decomposition Macros for Excel©. J. Stat. Software 7:1–15.Google Scholar
  32. Matsuura, K. 2001. Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos 92:20–26.CrossRefGoogle Scholar
  33. Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.Google Scholar
  34. Ozaki, M., Wada-Katsumata, A., Fujikawa, K., Iwasaki, M., Yokohari, F., Satoji, Y., Nisimura, T., and Yamaoka, R. 2005. Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311–314.CrossRefPubMedGoogle Scholar
  35. Pirk, C. W. W., Neumann, P., Moritz, R. F. A., and Pamilo, P. 2001. Intranest relatedness and nestmate recognition in the meadow ant Formica pratensis (R.). Behav. Ecol. Sociobiol. 49:366–374.CrossRefGoogle Scholar
  36. Queller, D. C. and Goodnight, K. F. 1989. Estimating relatedness using genetic markers. Evolution 43:258–275.CrossRefGoogle Scholar
  37. Raymond, M. and Rousset, F. 1995. GENEPOP (version 1.2): A population genetics software for exact tests and ecumenism. J. Heredity 86:248–249.Google Scholar
  38. Su, N.-Y. and Haverty, M. I. 1991. Agonistic behavior among colonies of the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), from Florida and Hawaii: Lack of correlation with cuticular hydrocarbon composition. J. Insect Behav. 4:115–128.CrossRefGoogle Scholar
  39. Ter Braak, C. J. F. 1987. Ordination, pp. 29–77, in R. H. G. Jongman, C. J. F. Ter Braak, O. F. R. Van Tongeren (eds.). Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen.Google Scholar
  40. Thorne, B. L., Traniello, J. F. A., Adams, E. S., and Bulmer, M. 1999. Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): A review of the evidence from behavioral, ecological and genetic studies. Ethol. Ecol. Evol. 11:149–169.Google Scholar
  41. Tsutsui, N. D., Suarez, A. V., Holway, D. A., and Case, T. J. 2000. Reduced genetic variation in the success of an invasive species. Proc. Natl. Acad. Sci. USA 97:5948–5953.CrossRefPubMedGoogle Scholar
  42. Vander Meer, R. K. and Morel, L. 1998. Nestmate recognition in ants, pp. 79–103, in R. K. Vander Meer, M. D. Breed, K. E. Espelie, and M. L. Winston (eds.). Pheromone Communication in Social Insects: Ants, Wasps, Bees and Termites. Westview Press, Boulder, CO.Google Scholar
  43. Vargo, E. L. 2000. Polymorphism at trinucleotide microsatellite loci in the subterranean termite Reticulitermes flavipes. Mol. Ecol. 9:817–829.CrossRefPubMedGoogle Scholar
  44. Vargo, E. L. 2003. Hierarchical analysis of colony and population genetic structure of the eastern subterranean termite, Reticulitermes flavipes, using two classes of molecular markers. Evolution 57:2805–2818.PubMedGoogle Scholar
  45. Vieau, F. 2001. Comparison of the spatial distribution and reproductive cycle of Reticulitermes santonensis Feytaud and Reticulitermes lucifugus grassei Clément (Isoptera, Rhinotermitidae) suggests that they represent introduced and native species, respectively. Insectes Soc. 48:57–62.CrossRefGoogle Scholar
  46. Wilson, E. O. 1971. The Insect Societies. Harvard University Press, Cambridge.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Stéphanie Dronnet
    • 1
  • Caroline Lohou
    • 2
  • Jean-Philippe Christides
    • 1
  • Anne-Geneviève Bagnères
    • 1
  1. 1.Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 6035, Faculté des Sciences et Techniques, Parc GrandmontUniversité François RabelaisToursFrance
  2. 2.Circonscription des Études végétales, Direction des Parcs, Jardins et Espaces VertsVille de ParisFrance

Personalised recommendations