Journal of Chemical Ecology

, Volume 32, Issue 4, pp 795–814 | Cite as

Geographic and Seasonal Variation in Alkaloid-Based Chemical Defenses of Dendrobates pumilio from Bocas del Toro, Panama

  • Ralph A. Saporito
  • Maureen A. Donnelly
  • H. Martin Garraffo
  • Thomas F. Spande
  • John W. Daly
Article

Abstract

Poison frogs contain an alkaloid-based chemical defense that is derived from a diet of certain alkaloid-containing arthropods, which include mites, ants, beetles, and millipedes. Variation in population-level alkaloid profiles among species has been documented, and more than 800 different alkaloids have been identified. In the present study, we examine individual alkaloid variation in the dendrobatid poison frog Dendrobates pumilio among seven populations and between two seasons on Isla Bastimentos, located in the Bocas del Toro archipelago of Panama. Alkaloid profiles vary among populations and between seasons, illustrating that chemical defense in this species can vary on a small spatial and temporal scale. Alkaloid variation among populations is marginally correlated with geographic distance, and close populations have profiles more similar to each other than to distant populations. Individuals within populations also vary in alkaloid profiles. Differences are attributed to both spatial and temporal variations in the availability of alkaloid-containing arthropods. Many of the alkaloids present in the skin of D. pumilio appear likely to be of ant origin, supporting the importance of myrmecophagy in chemical defense among poison frogs. However, a variety of frog skin alkaloids was recently detected in mites, suggesting that mites may also play an important role in chemical defense.

Keywords

Poisonfrogs Dendrobatid Dendrobates pumilio Alkaloids Arthropods Ants Mites Chemical defense 

References

  1. Ayer, W. A. and Browne, L. M. 1977. The ladybug alkaloids including synthesis and biosynthesis. Heterocycles 7:685–707.CrossRefGoogle Scholar
  2. Boppre, M. 1990. Lepidoptera and pyrrolizidine alkaloids: exemplification of complexity in chemical ecology. J. Chem. Ecol. 16:165–185.CrossRefGoogle Scholar
  3. Braekman, J. C., Daloze, D. and Pasteels, J. M. 1998. Alkaloids in animals, pp. 349–378, in M. F. Roberts and M. Wink (eds.). Alkaloids: Biochemistry, Ecology, and Medicinal Applications. Plenum Press, New York.Google Scholar
  4. Caldwell, J. P. 1996. The evolution of myrmecophagy and its correlates in poison frogs (Family: Dendrobatidae). J. Zool. 240:75–101.Google Scholar
  5. Cimino, G. and Ghiselin, M. T. 1998. Chemical defense and evolution in the Sacoglossa (Mollusca: Gastropoda: Opisthobranchia). Chemoecology 8:51–60.CrossRefGoogle Scholar
  6. Clark, V. C., Raxworthy, C. J., Rakotomalala, V., Sierwald, P. and Fisher, B. L. 2005. Convergent evolution of chemical defense in poison frogs and arthropod prey between Madagascar and the neotropics. Proc. Natl. Acad. Sci. USA 102:11617–11622.CrossRefPubMedGoogle Scholar
  7. Daly, J. W. and Myers, C. W. 1967. Toxicity of Panamanian poison frogs (Dendrobates): some biological and chemical aspects. Science 156:970–973.PubMedCrossRefGoogle Scholar
  8. Daly, J. W., Myers, C. W. and Whittaker, N. 1987. Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the amphibia. Toxicon 25:1023–1095.CrossRefPubMedGoogle Scholar
  9. Daly, J. W., Secunda, S., Garraffo, H. M., Spande, T. F., Wisnieski, A., Nishihira, C. and Cover, J. F. Jr. 1992. Variability in alkaloid profiles in neotropical poison frogs (Dendrobatidae): Genetic versus environmental determinants. Toxicon 30:887–898.CrossRefPubMedGoogle Scholar
  10. Daly, J. W., Garraffo, H. M., Spande, T. F., Jaramillo, C. and Rand, S. A. 1994a. Dietary source for skin alkaloids of poison frogs (Dendrobatidae)? J. Chem. Ecol. 20:943–955.CrossRefGoogle Scholar
  11. Daly, J. W., Secunda, S., Garraffo, H. M., Spande, T. F., Wisnieski, A. and Cover, J. F. Jr. 1994b. An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon 32:657–663.CrossRefPubMedGoogle Scholar
  12. Daly, J. W., Andriamaharavo, N. R., Andriantsiferana, M. and Myers, C. W. 1996. Madagascan poison frogs (Mantella) and their skin alkaloids. Am. Mus. Novit. 3177:1–34.Google Scholar
  13. Daly, J. W., Garraffo, H. M., Hall, G. S. E. and Cover, J. F. Jr. 1997. Absence of skin alkaloids in captive-raised Madagascan mantelline frogs (Mantella) and sequestration of dietary alkaloids. Toxicon 35:1131–1135.CrossRefPubMedGoogle Scholar
  14. Daly, J. W., Garraffo, H. M., Jain, P., Spande, T. F., Snelling, R. R., Jaramillo, C. and Rand, S. A. 2000. Arthropod–frog connection: Decahydroquinoline and pyrrolizidine alkaloids common to microsympatric myrmicine ants and dendrobatid frogs. J. Chem. Ecol. 26:73–85.CrossRefGoogle Scholar
  15. Daly, J. W., Kaneko, T., Wilham, J., Garraffo, H. M., Spande, T. F., Espinosa, A. and Donnelly, M. A. 2002. Bioactive alkaloids of frog skins: combinatorial bioprospecting reveals that pumiliotoxins have an arthropod source. Proc. Natl. Acad. Sci. USA 99:13996–14001.CrossRefPubMedGoogle Scholar
  16. Daly, J. W., Garraffo, H. M., Spande, T. F., Clark, V. C., Ma, J., Ziffer, H. and Cover, J. F. Jr. 2003. Evidence for an enantioselective pumiliotoxin 7-hydroxylase in dendrobatid poison frogs of the genus Dendrobates. Proc. Natl. Acad. Sci. USA 100:11092–11097.CrossRefPubMedGoogle Scholar
  17. Daly, J. W., Spande, T. F. and Garraffo, H. M. 2005. Alkaloids from amphibian skin: A tabulation of over eight-hundred alkaloids. J. Nat. Prod. 68:1556–1575.CrossRefPubMedGoogle Scholar
  18. Darst, C. R., Menendez-Guerrero, P. A., Coloma, L. A., and Cannatella, D. C. 2005. Evolution of dietary specialization and chemical defense in poison frogs (Dendrobatidae): A comparative analysis. Am. Nat. 165:56–69.CrossRefPubMedGoogle Scholar
  19. Deslippe, R. J. and Guo, Y. 2000. Venom alkaloids of fire ants in relation to worker size and age. Toxicon 38:223–232.CrossRefPubMedGoogle Scholar
  20. Donnelly, M. A. 1991. Feeding patterns of the strawberry poison frog, Dendrobates pumilio (Anura: Dendrobatidae). Copeia 3:723–730.CrossRefGoogle Scholar
  21. Dumbacher, J. P., Spande, T. F. and Daly, J. W. 2000. Batrachotoxin alkaloids from passerine birds: A second toxic bird genus (Ifrita kowaldi) from New Guinea. Proc. Natl. Acad. Sci. USA 97:12933–13460.CrossRefPubMedGoogle Scholar
  22. Dumbacher, J. P., Wako, A., Derrickson, S. R., Samuelson, A., Spande, T. F. and Daly, J. W. 2004. Melyrid beetles (Choresine): A putative source for the batrachotoxin alkaloids found in poison-dart frogs and passerine birds. Proc. Natl. Acad. Sci. USA 101:15857–15860.CrossRefPubMedGoogle Scholar
  23. Fahey, S. J. and Garson, M. J. 2002. Geographic variation of natural products of tropical nudibranch Asteronotus cespitosus. J. Chem. Ecol. 28:1773–1785.CrossRefPubMedGoogle Scholar
  24. Filipello, A. M. and Crespo, F. A. 1994. Alimentación de Melanophryniscus stelzneri (Anura: Bufonidae). Cuadernos de Herpetologia 8:18–24.Google Scholar
  25. Garraffo, H. M., Spande, T. F., Daly, J. W., Baldessari, A. and Gros, E. G. 1993a. Alkaloids from bufonid toads (Melanophryniscus): Decahydroquinolines, pumiliotoxins and homopumiliotoxins, indolizidines, pyrrolizidines, and quinolizidines. J. Nat. Prod. 56:357–373.CrossRefPubMedGoogle Scholar
  26. Garraffo, H. M., Caceres, J., Daly, J. W. and Spande, T. F. 1993b. Alkaloids in Madagascan frogs (Mantella): Pumiliotoxins, indolizidines, quinolizidines, and pyrrolizidines. J. Nat. Prod. 56:1016–1038.CrossRefPubMedGoogle Scholar
  27. Hartmann, T. and Ober, D. 2000. Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. Top. Curr. Chem. 209:207–243.Google Scholar
  28. Hartmann, T. and Witte, L. 1995. Chemistry, biology, and chemoecology of the pyrrolizidine alkaloids, pp. 155–233, in S. W. Pelletier (ed.). Alkaloids: Chemical and Biological Perspectives, Vol. 9. Pergamon Press, Oxford.Google Scholar
  29. Janzen, D. H. 1973. Sweep samples of tropical foliage insects: Effects of seasons, vegetation types, elevation, time of day and insularity. Ecology 54:687–701.CrossRefGoogle Scholar
  30. Janzen, D. H. and Schoener, T. W. 1968. Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season. Ecology 49:96–110.CrossRefGoogle Scholar
  31. Jones, T. H. and Blum, M. S. 1983. Arthropod alkaloids: distribution, functions, and chemistry, pp. 33–84, in S. W. Pelletier (ed.). Alkaloids: Chemical and Biological Perspectives, Vol. 1. Wiley, New York.Google Scholar
  32. Jones, T. H., Gorman, J. S. T., Snelling, R. R., Delabie, J. H. Q., Blum, M. S., Garraffo, H. M., Jain, P., Daly, J. W. and Spande, T. F. 1999. Further alkaloids common to ants and frogs: Decahydroquinolines and a quinolizidine. J. Chem. Ecol. 25:1179–1193.CrossRefGoogle Scholar
  33. Klitzke, C. F. and Trigo, J. R. 2000. New records for pyrrolizidine alkaloid-feeding insects. Hemiptera and Coleoptera on Senecio brasiliensis. Biochem. Syst. Ecol. 28:313–318.CrossRefPubMedGoogle Scholar
  34. Kubanek, J., Williams, D. E., Dilip De Silva, E., Allen, T. and Andersen, R. J. 1995. Cytotoxic alkaloids from the flatworm Prostheceraeus villatus and its tunicate prey Clavelina lepadiformis. Tetrahedron Lett. 36:6189–6192.CrossRefGoogle Scholar
  35. Levings, S. C. 1983. Seasonal, annual, and among site variation in the ground ant community of a deciduous tropical forest: some causes of patchy species distributions. Ecol. Monogr. 53:435–455.CrossRefGoogle Scholar
  36. Levings, S. C. and Windsor, D. M. 1984. Litter moisture content as a determinant of litter arthropod distribution and abundance during the dry season on Barro Colorado Island, Panama. Biotropica 16:125–131.CrossRefGoogle Scholar
  37. Lieberman, S. S. and Dock, C. F. 1982. Analysis of the leaf litter arthropod fauna of a lowland tropical evergreen forest site (La Selva, Costa Rica). Rev. Biol. Trop. 30:27–34.Google Scholar
  38. Macfoy, C., Danosus, D., Sandit, R., Jones, T. H., Garraffo, H. M., Spande, T. F. and Daly, J. W. 2005. Alkaloids of anuran skin: Antimicrobial function? Z. Naturforschung, 60:932–937.Google Scholar
  39. Mebs, D. 2001. Toxicity in animals. Trends in evolution? Toxicon 39:87–96.CrossRefPubMedGoogle Scholar
  40. Mebs, D., Pogoda, W., Maneyro, R., and Kwet, A. 2005. Studies on the poisonous skin secretion of individual red bellied toads, Melanophryniscus montevidensis (Anura, Bufonidae), from Uruguay. Toxicon 46:641–650.CrossRefPubMedGoogle Scholar
  41. Mori, A. and Burghardt, G. M. 2000. Does prey matter? Geographic variation in antipredator responses of hatchlings of a Japanese natricine snake (Rhabdophis tigrinus). J. Comp. Psych. 114:408–413.CrossRefGoogle Scholar
  42. Mortari, M. R., Schwartz, E. N. F., Schwartz, C. A., Pires, O. R. Jr., Santos, M. M., Bloch, C. Jr. and Sebben, A. 2004. Main alkaloids from the Brazilian dendrobatidae frog Epipedobates flavopictus: Pumiliotoxin 251D, histrionicotoxin and decahydroquinolines. Toxicon 43:303–310.CrossRefPubMedGoogle Scholar
  43. Myers, C. W. and Daly, J. W. 1976. Preliminary evaluation of skin toxins and vocalizations in taxonomic and evolutionary studies of poison-dart frogs (Dendrobatidae). B. Am. Mus. Nat. Hist. 157:175–262.Google Scholar
  44. Myers, C. W. and Daly, J. W. 1980. Taxonomy and ecology of Dendrobates bombetes, a new Andean poison frog with new skin toxins. Am. Mus. Novit. 2692:1–23.Google Scholar
  45. Myers, C. W. and Daly, J. W. 1983. Dart-poison frogs. Sci. Am. 248:120–133.PubMedGoogle Scholar
  46. Myers, C. W., Daly, J. W., Garraffo, H. M., Wisnieski, A. and Cover, J. F. Jr. 1995. Discovery of the Costa Rican poison frog Dendrobates granuliferus in sympatry with Dendrobates pumilio, and comments on taxonomic use of skin alkaloids. Am. Mus. Novit. 3144:1–21.Google Scholar
  47. Numata, A. and Ibuka, T. 1987. Alkaloids from ants and other insects, pp. 193–315, in A. Brossi (ed.). The Alkaloids, Vol. 31. Academic Press, New York.Google Scholar
  48. Pengilley, R. K. 1971. The food of some Australian anurans (Amphibia). J. Zool. 163:93–103.CrossRefGoogle Scholar
  49. Santos, J. C., Coloma, L. A. and Cannatella, D. C. 2003. Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proc. Natl. Acad. Sci. USA 100:12792–12797.CrossRefPubMedGoogle Scholar
  50. Saporito, R. A., Donnelly, M. A., Hoffman, R. L., Garraffo, H. M. and Daly, J. W. 2003. A siphonotid millipede (Rhinotus) as the source of spiropyrrolizidine oximes of dendrobatid frogs. J. Chem. Ecol. 29:2781–2786.CrossRefPubMedGoogle Scholar
  51. Saporito, R. A., Garraffo, H. M., Donnelly, M. A., Edwards, A. L., Longino, J. T. and Daly, J. W. 2004. Formicine ants: An arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs. Proc. Natl. Acad. Sci. USA 101:8045–8050.CrossRefPubMedGoogle Scholar
  52. Smith, B. P., Tyler, M. J., Kaneko, T., Garraffo, H. M., Spande, T. F. and Daly, J. W. 2002. Evidence of biosynthesis of pseudophrynamine alkaloids by an Australian myobatrachid frog (Pseudophryne) and for sequestration of dietary pumiliotoxins. J. Nat. Prod. 65:439–447.CrossRefPubMedGoogle Scholar
  53. Summers, K. and Clough, M. E. 2001. The evolution of coloration and toxicity in the poison frog family (Dendrobatidae). Proc. Natl. Acad. Sci. USA 98:6227–6232.CrossRefPubMedGoogle Scholar
  54. Summers, K., Bermingham, E., Weigt, L. A., McCafferty, S. and Dahlstrom, L. 1997. Phenotypic and genetic divergence in three species of dart-poison frogs with contrasting parental behavior. J. Hered. 88:8–13.Google Scholar
  55. Takada, W., Sakata, T., Shimano, S., Enami, Y., Mori, N., Nishida, R. and Kuwahara, Y. 2005. Scheloribatid mites as the source of pumiliotoxins in dendrobatid frogs. J. Chem. Ecol. 31:2403–2415.CrossRefPubMedGoogle Scholar
  56. Termonia, A., Pasteels, J. M., Windsoer, D. M. and Milinkovitch, M. C. 2001. Dual chemical sequestration: A key mechanism in transitions among ecological specialization. Philos. R. Soc. Lond. 269:1–6.CrossRefGoogle Scholar
  57. Toft, C. A. 1995. Evolution of diet specialization in poison-dart frogs (Dendrobatidae). Herpetologica 51:202–216.Google Scholar
  58. Torres, J. A., Zottig, V. E., Co, J. E., Jones, T. H. and Snelling, R. R. 2001. Caste specific alkaloid chemistry of Solenopsis maboya and S. torresi (Hymenoptera: Formicidae). Sociobiology 37:579–584.Google Scholar
  59. Vences, M., Glaw, F. and Bohme, W. 1998. Evolutionary correlates of microphagy in alkaloid-containing frogs (Amphibia: Anura). Zool. Anz. 236:217–230.Google Scholar
  60. Vences, M., Kosuch, J., Boistel, R., Haddad, C. F. B., La Marca, E., Lotters, S. and Veith, M. 2003. Convergent evolution of aposematic coloration in Neotropical poison frogs: A molecular phylogenetic perspective. Org. Divers. Evol. 3:215–226.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Ralph A. Saporito
    • 1
  • Maureen A. Donnelly
    • 1
  • H. Martin Garraffo
    • 2
  • Thomas F. Spande
    • 2
  • John W. Daly
    • 2
  1. 1.Department of Biological SciencesFlorida International UniversityMiamiUSA
  2. 2.Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthDepartment of Health and Human ServicesBethesdaUSA

Personalised recommendations