Journal of Chemical Ecology

, Volume 32, Issue 3, pp 547–564

Where did the Chili Get its Spice? Biogeography of Capsaicinoid Production in Ancestral Wild Chili Species

  • Joshua J. Tewksbury
  • Carlos Manchego
  • David C. Haak
  • Douglas J. Levey
Article

Abstract

The biogeography of pungency in three species of wild chili in the chaco and surrounding highland habitats of southeastern Bolivia is described. We report that Capsicum chacoense, C. baccatum, and C. eximium are polymorphic for production of capsaicin and its analogs, such that completely pungent and completely nonpungent individuals co-occur in some populations. In C. chacoense, the density of plants and the proportion of pungent plants increased with elevation. Above 900 m, all individuals in all populations except two were pungent; nonpungent individuals in at least one of the two polymorphic populations were likely a result of spreading by humans. The occurrence of pungent and nonpungent individuals in three species of ancestral Capsicum and the geographic variation of pungency within species suggest that production of capsaicin and its analogs entails both costs and benefits, which shift from one locality to another. Determining the selection pressures behind such shifts is necessary to understand the evolution of pungency in chilies.

Key Words

Capsaicin capsaicinoid PSM fruit secondary metabolite fruit chemistry intraspecific variation biogeography spice Capsicum chacoense Capsicum baccatum Capsicum eximium 

References

  1. Adler, L. S., Schmitt, J., and Bowers, M. D. 1995. Genetic variation in defensive chemistry in Plantago lanceolata (Plantaginaceae) and its effect on the specialist herbivore Junonia coenia (Nymphalidae). Oecologia 101:75–85.CrossRefGoogle Scholar
  2. Andrews, J. 1996. Peppers, the Domesticated Capsicums. UT Press, Austin, Utah.Google Scholar
  3. Baldwin, I. T. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc. Natl. Acad. Sci. USA 95:8113–8118.PubMedCrossRefGoogle Scholar
  4. Berenbaum, M. R. 1995. The chemistry of defense—theory and practice. Proc. Natl. Acad. Sci. USA 92:2–8.PubMedCrossRefGoogle Scholar
  5. Berenbaum, M. R. and Feeny, P. 1981. Toxicity of angular furanocoumarins to swallowtail butterflies: escalation in a coevolutionary arms race? Science 212:927–929.PubMedCrossRefGoogle Scholar
  6. Berenbaum, M. R. and Zangerl, A. R. 1998. Chemical phenotype matching between a plant and its insect herbivore. Proc. Natl. Acad. Sci. USA 95:13743–13748.PubMedCrossRefGoogle Scholar
  7. Blum, E., Liu, K., Mazourek, M., Yoo, E. Y., Jahn, M., and Paran, I. 2002. Molecular mapping of the C locus for presence of pungency in Capsicum. Genome 45:702–705.PubMedCrossRefGoogle Scholar
  8. Blum, E., Mazourek, M., O'Connell, M., Curry, J., Thorup, T., Liu, K. D., Jahn, M., and Paran, I. 2003. Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum. Theor. Appl. Genet. 108:79–86.PubMedCrossRefGoogle Scholar
  9. Bosland, P. W. 1994. Chiles—history, cultivation, and uses, pp. 347–366, in G. Charalambous (ed.). Spices, Herbs and Edible Fungi. Elsevier, Amsterdam.Google Scholar
  10. Cipollini, M. L. 2000. Secondary metabolites of vertebrate-dispersed fruits: evidence for adaptive functions. Rev. Chil. Hist. Nat. 73:421–440.CrossRefGoogle Scholar
  11. Cipollini, M. L. and Levey, D. J. 1997. Secondary metabolites of fleshy vertebrate-dispersed fruits: adaptive hypotheses and implications for seed dispersal. Am. Nat. 150:346–372.CrossRefPubMedGoogle Scholar
  12. Cipollini, M. L., Paulk, E., and Cipollini, D. F. 2002. Effect of nitrogen and water treatment on leaf chemistry in horsenettle (Solanum carolinense), and relationship to herbivory by flea beetles (Epitrix spp.) and tobacco hornworm (Manduca sexta). J. Chem. Ecol. 28:2377–2398.PubMedCrossRefGoogle Scholar
  13. Collins, M. D., Wasmund, L. M., and Bosland, P. W. 1995. Improved method for quantifying capsaicinoids in capsicum using high-performance liquid-chromatography. HortScience 30:137–139.Google Scholar
  14. Cordell, G. A. and Araujo, O. E. 1993. Capsaicin: identification, nomenclature, and pharmacotherapy. Ann. Pharmacother. 27:330–336.PubMedGoogle Scholar
  15. Cronin, G. and Hay, M. E. 1996. Within plant variation in seaweed palatability and chemical defenses: optimal defense theory versus the growth differentiation balance hypothesis. Oecologia 105:361–368.CrossRefGoogle Scholar
  16. D'Arcy, W. G. and Eshbaugh, W. H. 1974. New world peppers (Capsicum–Solanaceae) north of Columbia: a resume. Baileya 19:93–105.Google Scholar
  17. DeWitt, D. and Bosland, P. W. 1996. Peppers of the World: An Identification Guide. Ten Speed Press, Berkeley.Google Scholar
  18. Eshbaugh, W. H. 1970. A biosystematic and evolutionary study of Capsicum baccatum (Solanaceae). Brittonia 22:31–43.CrossRefGoogle Scholar
  19. Eshbaugh, H. W. 1976. XXI. Genetic and biochemical systematic studies of chili peppers (Capsicum–Solanaceae). Bull. Torrey Bot. Club 102:396–403.CrossRefGoogle Scholar
  20. Eshbaugh, W. H., Smith, P. G., and Nickrent, D. L. 1983. Capsicum tovarii (Solanaceae), a new species of pepper from Peru. Brittonia 35:55–60.CrossRefGoogle Scholar
  21. Fornoni, J., Valverde, P. L., and Nunez-Farfan, J. 2004. Population variation in the cost and benefit of tolerance and resistance against herbivory in Datura stramonium. Evolution 58:1696–1704.PubMedGoogle Scholar
  22. Fujiwake, H., Suzuki, T., and Iwai, K. 1982. Formation and metabolism of the pungent principle of capsicum fruits. 11. Capsaicinoid formation in the protoplast from the placenta of capsicum fruits. Agric. Biol. Chem. 46:2591–2592.Google Scholar
  23. Futuyma, D. J. 1998. Evolutionary Biology, 3rd ed. Sinauer Associates, Sunderland, MA.Google Scholar
  24. Futuyma, D. J. and Mitter, C. 1996. Insect–plant interactions: the evolution of component communities. Proc. R. Soc. Biol. 351:1361–1366.Google Scholar
  25. Govindarajan, V. S. 1986. Capsicum—production, technology, chemistry, and quality. 3. Chemistry of the color, aroma, and pungency stimuli. Crit. Rev. Food Sci. Nutr. 24:245–355.PubMedGoogle Scholar
  26. Govindarajan, V. S. and Sathyanarayana, M. N. 1991. Capsicum—production, technology, chemistry, and quality. 5. Impact on physiology, pharmacology, nutrition, and metabolism—structure, pungency, pain, and desensitization sequences. Crit. Rev. Food Sci. Nutr. 29:435–474.PubMedGoogle Scholar
  27. Govindarajan, V. S., Rajalakshmi, D., and Chand, N. 1987. Capsicum—production, technology, chemistry, and quality. 4. Evaluation of quality. Crit. Rev. Food Sci. Nutr. 25: 185–282.PubMedCrossRefGoogle Scholar
  28. Harvell, K. P. and Bosland, P. W. 1997. The environment produces a significant effect on pungency of chiles. HortScience 32:1292.Google Scholar
  29. Heiser, C. B. and Smith, P. V. 1958. New species of Capsicum from South America. Brittonia 10:194–201.CrossRefGoogle Scholar
  30. Iwai, K., Suzuki, T., and Fujiwake, H. 1979. Formation and accumulation of pungent principle of hot pepper fruits, capsaicin and its analogs, in Capsicum annuum var. annuum at different growth-stages after flowering. Agri. Biol. Chem. 43:2493–2498.Google Scholar
  31. Izhaki, I. 2002. Emodin—a secondary metabolite with multiple ecological functions in higher plants. New Phytol. 155:205–217.CrossRefGoogle Scholar
  32. Izhaki, I., Tsahar, E., Paluy, I., and Friedman, J. 2002. Within population variation and interrelationships between morphology, nutritional content, and secondary compounds of Rhamnus alaternus fruits. New Phytol. 156:217–223.CrossRefGoogle Scholar
  33. Jahn, A. E., Davis, S. E., and Saavedra Zankys, A. M. 2002. Patterns of austral bird migration in the Bolivian chaco. J. Field Ornithol. 73:258–267.Google Scholar
  34. Kawada, T., Watanabe, T., Katsura, K., Takami, H., and Iwai, K. 1985. Formation and metabolism of pungent principle of capsicum fruits. 15. Microdetermination of capsaicin by high-performance liquid-chromatography with electrochemical detection. J. Chromatogr. 329:99–105.PubMedCrossRefGoogle Scholar
  35. Lerdau, M., Litvak, M., and Monson, R. 1994. Plant chemical defense—monoterpenes and the growth-differentiation balance hypothesis. Trends Ecol. Evol. 9:58–61.CrossRefGoogle Scholar
  36. McDonald, E. P., Agrell, J., and Lindroth, R. L. 1999. CO2 and light effects on deciduous trees: growth, foliar chemistry, and insect performance. Oecologia 119:389–399.Google Scholar
  37. McLeod, M. J., Guttman, S. I., and Eshbaugh, W. H. 1982. Early evolution of chile peppers (Capsicum). Econ. Bot. 36:361–386.Google Scholar
  38. McLeod, M. J., Guttman, S. I., Eshbaugh, W. H., and Rayle, R. E. 1983. An electrophoretic study of evolution in Capsicum (Solanaceae). Evolution 37:562–574.CrossRefGoogle Scholar
  39. Morton, C. V. 1938. Capsicum, in P. C. Standley (ed.). Flora of Costa Rica, University Microfilms.Google Scholar
  40. Redman, A. M., Cipollini, D. F., and Schultz, J. C. 2001. Fitness costs of jasmonic acid-induced defense in tomato, Lycopersicon esculentum. Oecologia 126:380–385.CrossRefGoogle Scholar
  41. Ribera, M. O., Libermann, M., Beck, S., and Moraes, M. 1994. Mapa de la vegetacion y areas protegidea de Bolivia. 1:1,500,000. Centro de investigaciones y manejo de recursos naturales (CIMAR) and Universidad Autónoma Gabriel Rene Moreno (UAGRM), La Paz, Bolivia.Google Scholar
  42. Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43:223–225.CrossRefGoogle Scholar
  43. Rowell, K. and Blinn, D. W. 2003. Herbivory on a chemically defended plant as a predation deterrent in Hyalella azteca. Freshw. Biol. 48:247–254.CrossRefGoogle Scholar
  44. Schemske, D. W. and Bradshaw, H. D. 1999. Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc. Natl. Acad. Sci. USA 96:11910–11915.PubMedCrossRefGoogle Scholar
  45. Schmitt, T. M., Hay, M. E., and Lindquist, N. 1995. Constraints on chemically mediated coevolution—multiple functions for seaweed secondary metabolites. Ecology 76:107–123.CrossRefGoogle Scholar
  46. Scoville, W. L. 1912. Note on capsicum. J. Am. Pharm. Assoc. 1:453.Google Scholar
  47. Siepielski, A. M. and Benkman, C. W. 2004. Interactions among moths, crossbills, squirrels, and lodgepole pine in a geographic selection mosaic. Evolution 58:95–101.PubMedGoogle Scholar
  48. Stebbens, G. L. 1972. Ecological distribution of centers of major adaptive radiations in angiosperms, pp. 7–34, in D. H. Valentine (ed.). Taxonomy, Phytogeography, and Evolution. Academic Press, New York.Google Scholar
  49. Stebbens, G. L. and Major, J. 1965. Endemism and speciation in the California flora. Ecol. Monogr. 35:1–35.CrossRefGoogle Scholar
  50. Stewart, C. Jr., Kang, B. C., Kede, L., Mazourek, M., Moore, S. L., Yoo, E. Y., Kim, B. D., Paran, I., and Jahn, M. M. 2005. The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J. 42:675–688.PubMedCrossRefGoogle Scholar
  51. Suzuki, T. and Iwai, K. 1984. Constituents of red pepper species: chemistry, biochemistry, pharmacology, and food science of the pungent principle of capsicum species, pp. 227–299, in A. Brossi (ed.). The Alkaloids: Chemistry and Pharmacology. Academic Press, San Diego.Google Scholar
  52. Suzuki, T., Fujiwake, H., and Iwai, K. 1980. Formation and metabolism of pungent principle of capsicum fruits. 5. Intracellular localization of capsaicin and its analogs, capsaicinoid, in capsicum fruit. 1. Microscopic investigation of the structure of the placenta of Capsicum annuum var. annuum. Plant Cell Physiol. 21:839–853.Google Scholar
  53. Tewksbury, J. J. 2002. Fruits, frugivores and the evolutionary arms race. New Phytol. 156:137–139.CrossRefGoogle Scholar
  54. Tewksbury, J. J. and Nabhan, G. P. 2001. Directed deterrence by capsaicin in chillies. Nature 412:403–404.PubMedCrossRefGoogle Scholar
  55. Tewksbury, J. J., Nabhan, G. P., Norman, D., Susan, H., Tuxill, J., and Donovan, J. 1999. In situ conservation of wild chiles and their biotic associates. Conserv. Biol. 13:98–107.CrossRefGoogle Scholar
  56. Thompson, J. N. and Cunningham, B. M. 2002. Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738.PubMedCrossRefGoogle Scholar
  57. Tong, N. and Bosland, P. W. 1999. Capsicum tovarii, a new member of the Capsicum baccatum complex. Euphytica 109:71–77.CrossRefGoogle Scholar
  58. Tsahar, E., Friedman, J., and Izhaki, I. 2002. Impact on fruit removal and seed predation of a secondary metabolite, emodin, in Rhamnus alaternus fruit pulp. Oikos 99:290–299.CrossRefGoogle Scholar
  59. Tsahar, E., Friedman, J., and Izhaki, I. 2003. Secondary metabolite emodin increases food assimilation efficiency of yellow-vented bulbuls (Pycnonotus xanthopygos). Auk 120:411–417.CrossRefGoogle Scholar
  60. Walsh, B. M. and Hoot, S. B. 2001. Phylogenetic relationships of Capsicum (Solanaceae) using DNA sequences from two noncoding regions: the chloroplast atpB–rbcL spacer region and nuclear waxy introns. Int. J. Plant Sci. 162:1409–1418.CrossRefGoogle Scholar
  61. Zangerl, A. R., Arntz, A. M., and Berenbaum, M. R. 1997. Physiological price of an induced chemical defense: photosynthesis, respiration, biosynthesis, and growth. Oecologia 109:433–441.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Joshua J. Tewksbury
    • 1
  • Carlos Manchego
    • 2
  • David C. Haak
    • 1
  • Douglas J. Levey
    • 3
  1. 1.Department of BiologyUniversity of WashingtonSeattleUSA
  2. 2.Departamento de Geografia e InformaticaMuseo Noel Kempff Mercado (U.A.G.R.M.)Santa CruzBolivia
  3. 3.Department of ZoologyUniversity of FloridaGainesvilleUSA

Personalised recommendations