Journal of Chemical Ecology

, Volume 32, Issue 2, pp 473–488

Reliable Signaling By Chemical Cues Of Male Traits And Health State In Male Lizards, Lacerta monticola



In spite of the importance of chemoreception in social organization and sexual selection of lizards, there is a lack of general knowledge on how the characteristics of chemical signals mediate these behaviors. Moreover, it is unknown which are the mechanisms that might confer honesty to the information provided by chemical signals. We analyzed here whether characteristics of the lipophilic fraction of femoral gland secretions of Lacerta monticola male lizards can be related to the morphology, physical condition, and health state of the sender. Our results indicated that some male traits, such as body size, number of blue spots, and number of femoral pores and their level of fluctuating asymmetry, were related to variability in the relative proportions of some lipophilic chemical compounds found in secretions. Thus, conspecifics could obtain reliable information on the producer of a scent mark based on chemicals alone, and this might be the basis of female choice observed in this lizard. Moreover, only males with a greater T-cell immune response had higher proportions of two steroids (ergosterol and dehydrocholesterol) in their femoral secretions, which might suggest that the signal is honest and costly to produce. We suggest that only high-quality males could divert these compounds from metabolism to secretions in order to produce an exaggerated and honest “chemical ornament.”

Key Words

Lizards femoral glands fatty acids steroids condition-dependent signaling sexual selection 


  1. Aitchison, J. 1986. The Statistical Analysis of Compositional Data: Monographs in Statistics and Applied Probability. Chapman and Hall, London.Google Scholar
  2. Alberts, A. C. 1990. Chemical properties of femoral gland secretions in the desert iguana Dipsosaurus dorsalis. J. Chem. Ecol. 16:13–25.CrossRefGoogle Scholar
  3. Alberts, A. C. 1993. Chemical and behavioral studies of femoral gland secretions in iguanid lizards. Brain Behav. Evol. 41:255–260.PubMedCrossRefGoogle Scholar
  4. Alberts, A. C., Sharp, T. R., Werner, D. I., and Weldon, P. J. 1992. Seasonal variation of lipids in femoral gland secretions of male green iguanas (Iguana iguana). J. Chem. Ecol. 18:703–712.CrossRefGoogle Scholar
  5. Allen, M. E., Bush, M., Oftedal, O. T., Roscoe, R., Walsh, T., and Holick, M. F. 1994. Update on vitamin D and ultraviolet light in basking lizards. Proc. Am. Assoc. Zool. Vet. 25:314–316.Google Scholar
  6. Amo, L., López, P., and Martín, J. 2004. Prevalence and intensity of haemogregarinid blood parasites in a population of the Iberian rock lizard, Lacerta monticola. Parasitol. Res. 94:290–293.PubMedCrossRefGoogle Scholar
  7. Aragón, P., López, P., and Martín, J. 2001a. Discrimination of femoral gland secretions from familiar and unfamiliar conspecifics by male Iberian rock-lizards, Lacerta monticola. J. Herpetol. 35:346–350.CrossRefGoogle Scholar
  8. Aragón, P., López, P., and Martín, J. 2001b. Chemosensory discrimination of familiar and unfamiliar conspecifics by lizards: Implication of field spatial relationships between males. Behav. Ecol. Sociobiol. 50:128–133.CrossRefGoogle Scholar
  9. Aragón, P., López, P., and Martín, J. 2003. Differential avoidance responses to chemical cues from familiar and unfamiliar conspecifics by male Iberian rock-lizards (Lacerta monticola). J. Herpetol. 37:583–585.CrossRefGoogle Scholar
  10. Belliure, J., Smith, L., and Sorci, G. 2004. Effect of testosterone on T cell-mediated immunity in two species of Mediterranean lacertid lizards. J. Exp. Zool. A 301:411–418.Google Scholar
  11. Bonnet, X. and Naulleau, G. 1994. A body condition index (BCI) in snakes to study reproduction. C. R. Acad. Sci., Ser. 3 Sci. Vie 317:34–41.Google Scholar
  12. Carman, E. N., Ferguson, G. W., Gehrmann, W. H., Chen, T. C., and Holick, M. F. 2000. Photobiosynthetic opportunity and ability for UVB generated vitamin D synthesis in free-living house geckos (Hemidactylus turcicus) and Texas spiny lizards (Sceloporus olivaceous). Copeia 2000:245–250.CrossRefGoogle Scholar
  13. Chauhan, N. B. 1986. A preliminary report on the lipid components of pre-anal gland secretion of lizards Hemidactylus flaviviridis and Uromastix hardwickii. J. Anim. Morphol. Physiol. 33:73–76.Google Scholar
  14. Cooper, W. E. 1994. Chemical discrimination by tongue-flicking in lizards: A review with hypotheses on its origin and its ecological and phylogenetic relationships. J. Chem. Ecol. 20:439–487.CrossRefGoogle Scholar
  15. Cooper, W. E. and Pérez-Mellado, V. 2001. Chemosensory responses to sugar and fat by the omnivorous lizard Gallotia caesaris with behavioral evidence suggesting a role for gustation. Physiol. Behav. 73:509–516.PubMedCrossRefGoogle Scholar
  16. Cooper, W. E., Pérez-Mellado, V., and Vitt, L. J. 2001. Lingual and biting responses to selected lipids by the lizard Podarcis lilfordi. Physiol. Behav. 75:237–241.CrossRefGoogle Scholar
  17. Cooper, W. E., Pérez-Mellado, V., and Vitt, L. J. 2002. Responses to major categories of food chemicals by the lizard Podarcis lilfordi. J. Chem. Ecol. 28:709–720.PubMedCrossRefGoogle Scholar
  18. Dietemann, V., Peeters, C., Liebig, J., Thivet, V., and Hölldobler, B. 2003. Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant Myrmecia gulosa. Proc. Natl. Acad. Sci. U.S.A. 100:10341–10346.PubMedCrossRefGoogle Scholar
  19. Eisner, T. and Meinwald, J. 1995. Chemical Ecology: The Chemistry of Biotic Interaction. Natl. Acad. Press, Washington.Google Scholar
  20. Escobar, C. A., Labra, A., and Niemeyer, H. M. 2001. Chemical composition of precloacal secretions of Liolaemus lizards. J. Chem. Ecol. 27:1677–1690.PubMedCrossRefGoogle Scholar
  21. Escobar, C. M., Escobar, C. A., Labra, A., and Niemeyer, H. M. 2003. Chemical composition of precloacal secretions of two Liolaemus fabiani populations: Are they different? J. Chem. Ecol. 29:629–638.PubMedCrossRefGoogle Scholar
  22. Fraser, D. R. 1995. Vitamin D. Lancet 345:104–107.PubMedCrossRefGoogle Scholar
  23. Grafen, A. 1990. Biological signals as handicaps. J. Theor. Biol. 144:517–546.PubMedCrossRefGoogle Scholar
  24. Hansen, H. S. and Jensen, B. 1985. Essential function of linoleic acid esterified in acylglucosylceramide and acylceramide in maintaining the epidermal water permeability barrier. Evidence from feeding studies with oleate, linoleate, arachidonate, columbinate, and α-linolate. Biochem. Biophys. Acta 834:357–363.PubMedGoogle Scholar
  25. Hay, A. and Watson, G. 1977. Vitamin D2 in vertebrate evolution. Comp. Biochem. Physiol. 56B:375–380.Google Scholar
  26. Jennions, M. D., Møller, A. P., and Petrie, M. 2001. The relationship between sexual attractiveness and adult survivorship: A meta-analysis. Q. Rev. Biol. 76:3–36.PubMedCrossRefGoogle Scholar
  27. Kotiaho, J. S. 2001. Costs of sexual traits: A mismatch between theoretical considerations and empirical evidence. Biol. Rev. 76:365–376.PubMedCrossRefGoogle Scholar
  28. Krebs, J. R. and Dawkins, R. 1983. Animal signals: Mind-reading and manipulation, pp. 380–402, in J. R. Krebs and N. B. Davies (eds.). Behavioural Ecology: An Evolutionary Approach, 2nd edn. Blackwell, Oxford.Google Scholar
  29. Labra, A. and Niemeyer, H. M. 1999. Intraspecific chemical recognition in the lizard Liolaemus tenuis. J. Chem. Ecol. 25:1799–1811.CrossRefGoogle Scholar
  30. Laing, C. J. and Fraser, D. R. 1999. The vitamin D system in iguanian lizards. Comp. Biochem. Physiol. 123B:373–379.Google Scholar
  31. Lochmiller, R. L., Vestey, M. R., and Boren, J. C. 1993. Relationship between protein nutritional status and immunocompetence in northern bobwhite chicks. Auk 110:503–510.Google Scholar
  32. López, P. and Martín, J. 2002. Chemical rival recognition decreases aggression levels in male Iberian wall lizards, Podarcis hispanica. Behav. Ecol. Sociobiol. 51:461–465.CrossRefGoogle Scholar
  33. López, P. and Martín, J. 2004. Sexual selection and chemoreception in lacertid lizards, pp. 119–137, in V. Pérez-Mellado, N. Riera, and A. Perera (eds.). The Biology of Lacertid Lizards. Evolutionary and Ecological Perspectives. Institut Menorquí d’Estudis, Menorca, Spain.Google Scholar
  34. López, P. and Martín, J. 2005a. Chemical compounds from femoral gland secretions of male Iberian rock lizards, Lacerta monticola cyreni. Z. Naturforsch., C 60:632–636.Google Scholar
  35. López, P. and Martín, J. 2005b. Female Iberian wall lizards prefer male scents that signal a better cell-mediated immune response. Biol. Lett. 1:404–406.PubMedCrossRefGoogle Scholar
  36. López, P., Muñoz, A., and Martín, J. 2002. Symmetry, male dominance and female mate preferences in the Iberian rock lizard, Lacerta monticola. Behav. Ecol. Sociobiol. 52:342–347.CrossRefGoogle Scholar
  37. López, P., Aragón, P., and Martín, J. 2003. Responses of female lizards, Lacerta monticola, to males’ chemical cues reflect their mating preference for older males. Behav. Ecol. Sociobiol. 55:73–79.CrossRefGoogle Scholar
  38. López, P., Martín, J., and Cuadrado, M. 2004. The role of lateral blue spots in intrasexual relationships between male Iberian rock-lizards, Lacerta monticola. Ethology 110:543–561.CrossRefGoogle Scholar
  39. Martín, J. and López, P. 2000. Chemoreception, symmetry and mate choice in lizards. Proc. R. Soc. Lond., B 267:1265–1269.CrossRefGoogle Scholar
  40. Mason, R. T. 1992. Reptilian pheromones, pp. 114–228, in C. Gans and D. Crews (eds.). Biology of the Reptilia, vol. 18. University of Chicago Press, Chicago.Google Scholar
  41. Mason, R. T. and Gutzke, W. H. N. 1990. Sex recognition in the leopard gecko, Eublepharis macularius (Sauria: Gekkonidae). Possible mediation by skin-derived semiochemicals. J. Chem. Ecol. 16:27–36.CrossRefGoogle Scholar
  42. Møller, A. P. and Swaddle, J. P. 1997. Asymmetry, Developmental Stability and Evolution. Oxford Univ. Press, Oxford.Google Scholar
  43. Olsson, M., Madsen, T., Nordby, J., Wapstra, E., Ujvari, B., and Wittsell, H. 2003. Major histocompatibility complex and mate choice in sand lizards. Proc. R. Soc. Lond., B (Suppl.) 270:S254–S256.CrossRefGoogle Scholar
  44. Penn, D. J. and Potts, W. K. 1998. Chemical signals and parasite mediated sexual selection. Trends Ecol. Evol. 13:391–396.CrossRefGoogle Scholar
  45. Pérez-Mellado, V. 1998. Lacerta monticola Boulenger, 1905, pp. 207–215, in A. Salvador (ed.). Reptiles. Fauna Ibérica, Vol. 10. Museo Nacional de Ciencias Naturales, Madrid.Google Scholar
  46. Pomiankowski, A. N. 1988. The evolution of female mate preferences for male genetic quality. Oxf. Surv. Evol. Biol. 5:136–184.Google Scholar
  47. Rantala, M. J., Kortet, R., Kotiaho, J. S., Vainikka, A., and Suhonen, J. 2003. Condition dependence of pheromones and immune function in the grain beetle Tenebrio molitor. Funct. Ecol. 17:534–540.CrossRefGoogle Scholar
  48. Sheldon, B. C. and Verhulst, S. 1996. Ecological immunology: Costly parasite defence and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11:317–321.CrossRefGoogle Scholar
  49. Stoddart, M. D. 1980. The Ecology of Vertebrate Olfaction. Chapman and Hall, London.Google Scholar
  50. Svensson, E., Sinervo, B., and Comendant, T. 2001. Density-dependent competition and selection on immune function in genetic lizard morphs. Proc. Natl. Acad. Sci. USA 98:12561–12565.PubMedCrossRefGoogle Scholar
  51. Wedekind, C. 1992. Detailed information about parasites revealed by sexual ornamentation. Proc. R. Soc. Lond., B 247:169–174.CrossRefGoogle Scholar
  52. Wedekind, C. and Folstad, I. 1994. Adaptive or nonadaptive immunosuppression by sex hormones? Am. Nat. 143:936–938.CrossRefGoogle Scholar
  53. Weldon, P. J. and Bangall, D. 1987. A survey of polar and nonpolar skin lipids from lizards by thin-layer chromatography. Comp. Biochem. Physiol. 87B:345–349.Google Scholar
  54. Weldon, P. J., Dunn, B. S., Mcdaniel, C. A., and Werner, D. I. 1990. Lipids in the femoral gland secretions of the green iguana (Iguana iguana). Comp. Biochem. Physiol. 95B:541–543.Google Scholar
  55. Westneat, D. F. and Birkhead, T. R. 1998. Alternative hypothesis linking the immune system and mate choice for good genes. Proc. R. Soc. Lond., B 265:1065–1073.CrossRefGoogle Scholar
  56. Wyatt, T. D. 2003. Pheromones and Animal Behaviour. Cambridge Univ. Press, Cambridge.Google Scholar
  57. Zahavi, A. 1975. Mate selection—A selection for a handicap. J. Theor. Biol. 53:205–214.PubMedCrossRefGoogle Scholar
  58. Zahavi, A. and Zahavi, A. 1997. The Handicap Principle. Oxford Press, New York.Google Scholar
  59. Zala, S. M., Potts, W. K., and Penn, D. J. 2004. Scent-marking displays provide honest signals of health and infection. Behav. Ecol. 15:338–344.CrossRefGoogle Scholar
  60. Ziboh, V. A., Miller, C. C., and Cho, Y. 2000. Significance of lipoxygenase-derived monohydroxy fatty acids in cutaneous biology. Prostagl. Lipid Med. 63:3–13.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Departamento de Ecología Evolutiva, Museo Nacional de Ciencias NaturalesCSICMadridSpain

Personalised recommendations