Journal of Chemical Ecology

, Volume 31, Issue 12, pp 2877–2896 | Cite as

Unraveling the Nature of Individual Recognition by Odor in Hermit Crabs

  • Francesca GherardiEmail author
  • Elena Tricarico
  • Jelle Atema


Individual recognition is a key element in the social life of many invertebrates. However, most studies conducted so far document that several species are capable of a “binary” discrimination among conspecifics, but not of a “true individual recognition.” Our objective was to learn more about the mechanisms that underlie individual recognition by odor in hermit crabs by individuating some of its properties. Using Pagurus longicarpus Say 1817 as a model species, we conducted four series of experiments in which the response of every test crab (the “receiver”) to the different odor treatments (emitted by a “sender”) was evaluated from its investigative behavior toward an empty, high-quality shell. After having excluded the possibility that crabs chemically recognize familiar/unfamiliar shells and/or shells of high/low quality, we explored whether the receivers discriminate odors from two familiar senders and whether this discrimination also occurs with unfamiliar crabs. We also asked whether crabs form an association between the odor of a familiar sender and some of its relevant attributes, i.e., rank, size, and shell quality. Finally, the shells inhabited by familiar individuals were manipulated to modify the association between odor and shell quality. Results showed that: (1) there is no odor specific of a rank; (2) individual crabs discriminate their own odor from the odor of other individuals; (3) they can chemically discriminate between larger crabs inhabiting higher-quality shells and smaller crabs inhabiting lower-quality shells, provided that these crabs are familiar to them; (4) they associate the odor of an individual crab with the quality of the shell it inhabits; and (5) this association quickly changes when social partners switch to shells of different quality. These results indicate that the nature of chemical recognition in P. longicarpus is more refined than a simple binary system. The receiver appears able to associate a type of information from the sender with memories of past experiences, therefore suggesting the hermit crab's potential for relatively high-order knowledge about conspecifics.

Key Words

Individual recognition odors dominance hierarchies hermit crabs Pagurus longicarpus 



We thank three anonymous referees for constructive criticism to a previous version of the paper. The study was made possible by funds provided to F.G. by MBL Associates, Ann E. Kammer Memorial Fellowship Fund, H. Keffer Hartline Fellowship Fund, Frank R. Lillie Fund, and Plum Foundation.


  1. Allee, W. C., Douglis, M. B. 1945A dominance order in the hermit crab, Pagurus longicarpus SayEcology26411412Google Scholar
  2. Barrows, E. M., Bell, W. J., Michener, C. D. 1975Individual odor differences and their social functions in insectsProc. Natl. Acad. Sci. USA7228242828PubMedGoogle Scholar
  3. Beecher, M. D. 1989Signalling systems for individual recognition: an information theory approachAnim. Behav.38248261Google Scholar
  4. Boal, J. G. 1996Absence of social recognition in laboratory-reared cuttlefish, Sepia officinalis L. (Mollusca: Cephalopoda)Anim. Behav.52529537CrossRefGoogle Scholar
  5. Brown, R. E., Roser, B., Singh, P. B. 1990The MHC and individual odors in ratsMcDonald, D. W.Natynczuk, S.Müller-Schwarze, D. eds. Chemical Signals in VertebratesOxford University PressNew York228243Google Scholar
  6. Caldwell, R. L. 1985A test of individual recognition in the stomatopod Gonodactylus festae Anim. Behav.33101106Google Scholar
  7. Chase, I. D., Weissburg, M., Dewitt, T. H. 1988The vacancy chain process: A new mechanism of resource distribution in animals with application to hermit crabsAnim. Behav.3612651274Google Scholar
  8. Falls, J. B. 1982Individual recognition by sound in birdsKroodsma, D. E.Miller, E. H. eds. Acoustic Communication in Birds. Volume 2, Song Learning and Its ConsequencesAcademic PressNew York237278Google Scholar
  9. Gherardi, F. 2005. Fighting behavior in hermit crabs: the combined effect of resource-holding potential and resource value in Pagurus longicarpus. Behav. Ecol. Sociobiol., in press.Google Scholar
  10. Gherardi, F., Atema, J. 2005aEffects of chemical context on shell investigation behavior in hermit crabsJ. Exp. Mar. Biol. Ecol.32017CrossRefGoogle Scholar
  11. Gherardi, F., Atema, J. 2005bMemory of social partners in hermit crab dominanceEthology111271285CrossRefGoogle Scholar
  12. Gherardi, F., Tiedemann, J. 2004aBinary individual recognition in hermit crabsBehav. Ecol. Sociobiol.55524530CrossRefGoogle Scholar
  13. Gherardi, F., Tiedemann, J. 2004bChemical cues and binary individual recognition in the hermit crab, Pagurus longicarpus J. Zool., Lond.2632329Google Scholar
  14. Halpin, Z. T. 1980Individual odors and individual recognition: Review and commentaryBiol. Behav.5233248Google Scholar
  15. Halpin, Z. T. 1986Individual odors among mammals: origins and functionsAdv. Stud. Behav.163970Google Scholar
  16. Hazlett, B. A. 1966Factors affective the aggressive behavior of the hermit crab Calcinus tibicen Z. Tierpsychol.23655671PubMedGoogle Scholar
  17. Hazlett, B. A. 1969‘Individual’ recognition and agonistic behaviour in Pagurus bernhardus Nature222268269PubMedGoogle Scholar
  18. Hazlett, B. A. 1978Shell exchanges in hermit crabs: aggression, negotiation or both?Anim. Behav.2612781279CrossRefGoogle Scholar
  19. Hazlett, B. A. 1996aOrganisation of hermit crab behaviour: Responses to multiple chemical inputsBehaviour133619642Google Scholar
  20. Hazlett, B. A. 1996bComparative study of hermit crab responses to shell-related chemical cuesJ. Chem. Ecol.2223172329CrossRefGoogle Scholar
  21. Hazlett, B. A. 2000Responses to single and multiple sources of chemical cues by New Zealand crustaceansMar. Freshw. Behav. Physiol.34120CrossRefGoogle Scholar
  22. Hurst, J. L., Payne, C. E., Nevison, C. M., Marie, A. D., Humphries, R. E., Robertson, D. H. L., Cavaggioni, A., Cavaggioni, A., Beynon, R. J. 2001Individual recognition in mice mediated by major urinary proteinsNature414631634PubMedCrossRefGoogle Scholar
  23. Jackson, N. W., Elwood, R. W. 1989Memory of information gained during shell investigation by the hermit crab, Pagurus bernhardus Anim. Behav.37529534CrossRefGoogle Scholar
  24. Johnson, V. R. 1977Individual recognition in the banded shrimp Stenopus hispidus Anim. Behav.25418428Google Scholar
  25. Johnston, R. E., Bullock, T. A. 2001Individual recognition by use of odours in golden hamsters: the nature of individual representationsAnim. Behav.61545557CrossRefGoogle Scholar
  26. Kaiser, L., Pérez-Maluf, R., Sandoz, J. C., Pham-Delègue, M. H. 2003Dynamics of odour learning in Leptopilina boulardi, a hymenopterous parasitoidAnim. Behav.6610771084CrossRefGoogle Scholar
  27. Karavanich, C., Atema, J. 1998Olfactory recognition of urine signals in dominance fights between male lobster, Homarus americanus Behaviour135719730Google Scholar
  28. Leonard, J. E., Ehrman, L., Schorsch, M. 1974Bioassay of a Drosophila pheromone influencing sexual selectionNature250261262PubMedCrossRefGoogle Scholar
  29. Liechti, P. M., Bell, W. J. 1975Brooding behavior of the Cuban cockroach Byrsotria fumigata (Blaberidae Blattaria)Insectes Soc.223546CrossRefGoogle Scholar
  30. Linsenmair, K. E., Linsenmair, D. 1971Paarbildung und Paarzusammenhalt bei der monogamen Wüstenassel Hemilepistus reaumuri (Crustacea Isopoda, Oniscoidea)Z. Tierpsychol.29134155PubMedGoogle Scholar
  31. Mclean, R. 1975. A description of a marine benthic faunal habitat web: A behavioral study. Ph.D. Dissertation. Florida State University.Google Scholar
  32. Menzel, R. 1999Memory dynamics in the honeybeeJ. Comp. Physiol. A185323340CrossRefGoogle Scholar
  33. Rittschof, D. 1980aChemical attraction of hermit crabs and other attendants to gastropod predation sitesJ. Chem. Ecol.6103118Google Scholar
  34. Rittschof, D. 1980bEnzymatic production of small molecules attracting hermit crabs to simulated predation sitesJ. Chem. Ecol.6665676Google Scholar
  35. Rittschof, D., Hazlett, B. A. 1997Behavioural responses of hermit crabs to shell cues, predator haemolymph and body odourJ. Mar. Biol. Assoc. U.K.77737751Google Scholar
  36. Rittschof, D., Tsai, D. W., Massey, P. G., Blanco, L., Kueber, G. L.,Jr., Haas, R. J.,Jr. 1992Chemical mediation of behavior in hermit crabs: Alarm and aggregation cuesJ. Chem. Ecol.18959984CrossRefGoogle Scholar
  37. Scully, E. P. 1978Utilization of surface foam as a food source by the hermit crab, Pagurus longicarpus Say, 1817Mar. Behav. Physiol.5159162CrossRefGoogle Scholar
  38. Scully, E. P. 1986Shell investigation behavior of the intertidal hermit crab Pagurus longicarpus SayJ. Crustac. Biol.6749756Google Scholar
  39. Siegel, S., Castellan, N. J.,Jr. 1988Nonparametric Statistics for the Behavioral SciencesMcGraw-HillNew YorkGoogle Scholar
  40. Sokal, R. R., Rohlf, F. J. 1969BiometryW.W. FreemanSan FranciscoGoogle Scholar
  41. Wickler, W., Seibt, U. 1970Das Verhalten von Hymenocera picta Dana, einer Seesterne fressenden Garnele (Decapoda Natantia, Gnathophyllidae)Z. Tierpsychol.27352368Google Scholar
  42. Wilber, T. P.,Jr. 1989Associations between gastropod shell characteristics and egg production in the hermit crab Pagurus longicarpus Oecologia81615CrossRefGoogle Scholar
  43. Wilber, T. P. 1990Influence of size, species and damage on shell selection by the hermit crab Pagurus longicarpus Mar. Biol.1043139CrossRefGoogle Scholar
  44. Williams, A. B. 1984Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to FloridaSmithsonian Institution PressWashington, DCGoogle Scholar
  45. Winston, M., Jacobson, S. 1978Dominance and effects of strange conspecifics on aggressive interactions in the hermit crab Pagurus longicarpus Anim. Behav.26184191PubMedCrossRefGoogle Scholar
  46. Zayan, R. 1994Special issue: Individual and social recognitionBehav. Processes331246Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Francesca Gherardi
    • 1
    Email author
  • Elena Tricarico
    • 1
  • Jelle Atema
    • 2
  1. 1.Dipartimento di Biologia Animale e GeneticaUniversità di FirenzeFlorenceItaly
  2. 2.Boston University Marine ProgramMarine Biological LaboratoryWoods HoleUSA

Personalised recommendations