Journal of Chemical Ecology

, Volume 31, Issue 11, pp 2621–2651 | Cite as

Plant Surface Properties in Chemical Ecology

  • Caroline Müller
  • Markus Riederer
Review Article


The surface of the primary aerial parts of terrestrial plants is covered by a cuticle, which has crucial autecological functions, but also serves as an important interface in trophic interactions. The chemical and physical properties of this layer contribute to these functions. The cuticle is composed of the cuticular layer and the cuticle proper, which is covered by epicuticular waxes. Whereas the cutin fraction is a polyester-type biopolymer composed of hydroxyl and hydroxyepoxy fatty acids, the cuticular waxes are a complex mixture of long-chain aliphatic and cyclic compounds. These highly lipophilic compounds determine the hydrophobic quality of the plant surface and, together with the microstructure of the waxes, vary in a species-specific manner. The physicochemical characteristics contribute to certain optical features, limit transpiration, and influence adhesion of particles and organisms. In chemical ecology, where interactions between organisms and the underlying (allelo-) chemical principles are studied, it is important to determine what is present at this interface between the plant and the environment. Several useful equations can allow estimation of the dissolution of a given organic molecule in the cuticle and its transport properties. The implementation of these equations is exemplified by examining glucosinolates, which play an important role in interactions of plants with other organisms. An accurate characterization of physicochemical properties of the plant surface is needed to understand its ecological significance. Here, we summarize current knowledge about the physical and chemical properties of plant cuticles and their role in interactions with microorganisms, phytophagous insects, and their antagonists.

Key Words

Attachment chemical interaction epicuticular waxes glucosinolate herbivores host recognition physicochemical properties plant cuticle protection 



The authors receive financial support for their work from the Sonderforschungsbereich 554 “Evolution des Arthropodenverhaltens” of the Deutsche Forschungsgemeinschaft. They are also grateful to C. Hart, Syngenta Crop Protection, Jealott's Hill, UK, for providing Figure 2; to C. Popp for permission of showing some shared unpublished data; to E. Städler, M. Rostás, R. Reifenrath, and two anonymous referees for critically reading and commenting on an earlier version of this manuscript; and to A. Renwick for editing. We are indebted to M. Hilker for encouraging us to conceive and write this review.


  1. Adati, T., Matsuda, K. 1993Feeding stimulants for various leaf beetles (Coleoptera: Chrysomelidae) in the leaf surface wax of their host plantsAppl. Entomol. Zool.28319324Google Scholar
  2. Ahmed, A., Crawford, T., Gould, S., Ha, Y. S., Hollrah, M., Noor-E-Ain, F., Dickman, M. B., Dussault, P. H. 2003Synthesis of (R)- and (S)-10,16-dihydroxyhexadecanoic acid: cutin stereochemistry and fungal activationPhytochemistry634752CrossRefPubMedGoogle Scholar
  3. Anderson, P. 2002Oviposition pheromones in herbivorous and carnivorous insectsHilker, M.Meiners, T. eds. Chemoecology of Insect Eggs and Egg DepositionBlackwell PublishingBerlin235263Google Scholar
  4. Andrews, J. H., Harris, R. F. 2000The ecology and biogeography of microorganisms of plant surfacesAnnu. Rev. Phytopathol.38145180CrossRefPubMedGoogle Scholar
  5. Baker, E. A. 1982Chemistry and morphology of plant epicuticular waxesCutler, D. F.Alvin, K. L.Price, C. E. eds. The Plant CuticleAcademic PressLondon139165Google Scholar
  6. Baker, E. A., Hunt, G. M. 1986Erosion of waxes from leaf surfaces by simulated rainNew Phytol.102161173Google Scholar
  7. Bargel, H., Barthlott, W., Koch, K., Schreiber, L., Neinhuis, C. 2004Plant cuticles: multifunctional interfaces between plant and environmentHemsley, A. R.Poole, I. eds. The Evolution of Plant PhysiologyElsevier Academic PressLondon171194Google Scholar
  8. Barnes, J. D., Cardoso-Vilhena, J. 1996Interactions between electromagnetic radiation and the plant cuticleKerstiens, G. eds. Plant Cuticles: an Integrated Functional ApproachBIOS Scientific PublishersOxford157174Google Scholar
  9. Barthlott, W., Neinhuis, C. 1997Purity of the sacred lotus, or escape from contamination in biological surfacesPlanta20218CrossRefGoogle Scholar
  10. Barthlott, W., Neinhuis, C., Cutler, D., Ditsch, F., Meusel, I., Theisen, I., Wilhelmi, H. 1998Classification and terminology of plant epicuticular waxesBot. J. Linn. Soc.12237260CrossRefGoogle Scholar
  11. Bartlet, E., Blight, M. M., Lane, P., Williams, I. H. 1997The responses of the cabbage seed weevil Ceutorhynchus assimilis to volatile compounds from oilseed rape in a linear track olfactometerEntomol. Exp. Appl.85257262CrossRefGoogle Scholar
  12. Bernays, E. A., Blaney, W. M., Chapman, R. F., Cook, A. G. 1976The ability of Locusta migratoria L. to perceive plant surface waxesSymp. Biol. Hung.163540Google Scholar
  13. Blakeman, J. P. 1982Phylloplane interactionsin Phytopathogenic ProkaryotesAcademic PressLondon307333Google Scholar
  14. Bodnaryk, R. P. 1992Leaf epicuticular wax, an antixenotic factor in Brassicaceae that affects the rate and pattern of feeding of flea beetles, Phyllotreta cruciferae (Goeze)Can. J. Plant Sci.7212951303Google Scholar
  15. Bohn, H. F., Federle, W. 2004Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surfaceProc. Natl. Acad. Sci. USA1011413814143CrossRefPubMedGoogle Scholar
  16. Brakke, T. W. 1994Specular and diffuse components of radiation scattered by leavesAgric. For. Meteorol.71283295CrossRefGoogle Scholar
  17. Brennan, E. B., Weinbaum, S. A., Rosenheim, J. A., Karban, R. 2001Heteroblasty in Eucalyptus globulus (Myricales: Myricaceae) affects ovipositional and settling preferences of Ctenarytaina eucalypti and C. spatulata (Homoptera: Psyllidae)Environ. Entomol.3011441149Google Scholar
  18. Brooks, J. S., Williams, E. H., Feeny, P. 1996Quantification of contact oviposition stimulants for black swallowtail butterfly, Papilio polyxenes, on the leaf surfaces of wild carrot, Daucus carotaJ. Chem. Ecol.2223412357CrossRefGoogle Scholar
  19. Brudenell, A. J. P., Griffiths, H., Rossiter, J. T., Baker, D. A. 1999The phloem mobility of glucosinolatesJ. Exp. Bot.50745756CrossRefGoogle Scholar
  20. Bullas-Appleton, E. S., Otis, G., Gillard, C., Schaafsma, A. W. 2004Potato leafhopper (Homoptera: Cicadellidae) varietal preferences in edible beans in relation to visual and olfactory cuesEnviron. Entomol.3313811388Google Scholar
  21. Burghardt, M., Schreiber, L., Riederer, M. 1998Enhancement of the diffusion of active ingredients in barley leaf cuticular wax by monodisperse alcohol ethoxylatesJ. Agric. Food Chem.4615931602CrossRefGoogle Scholar
  22. Burkhardt, J., Koch, K., Kaiser, H. 2001Deliquescence of deposited atmospheric particles on leaf surfacesWater Air Soil Pollut.1313321Google Scholar
  23. Butler, D. R. 1996The presence of water of leaf surfaces and its importance for microbes and insectsKerstiens, G. eds. Plant Cuticles: An Integrated Functional ApproachBIOS Scientific PublishersOxford267282Google Scholar
  24. Bystrom, B. G., Glater, R. B., Scott, F. M., Bowler, F. S. C. 1968Leaf surface of Beta vulgaris—electron microscope studyBot. Gaz.129133138CrossRefGoogle Scholar
  25. Carter, C. D., Gianfagna, T. J., Sacalis, J. N. 1989Sesquiterpenes in glandular trichomes of a wild tomato species and toxicity to the Colorado potato beetleJ. Agric. Food Chem.3714251428CrossRefGoogle Scholar
  26. Carver, T. L. W., Kunoh, H., Thomas, B. J., Nicholson, R. L. 1999Release and visualization of the extracellular matrix of conidia of Blumeria gaminisMycol. Res.103547560CrossRefGoogle Scholar
  27. Chang, G. C., Neufeld, J., Durr, D., Duetting, P. S., Eigenbrode, S. D. 2004Waxy bloom in peas influences the performance and behavior of Aphidius ervi, a parasitoid of the pea aphidEntomol. Exp. Appl.110257265CrossRefGoogle Scholar
  28. Chapman, R. F., Sword, G. 1993The importance of palpation in food selection by a polyphagous grasshopper (Orthoptera: Acrididae)J. Insect Behav.67991CrossRefGoogle Scholar
  29. Chen, S. X., Andreasson, E. 2001Update on glucosinolate metabolism and transportPlant Physiol. Biochem.39743758CrossRefGoogle Scholar
  30. Chen, S. X., Petersen, B. L., Olsen, C. E., Schulz, A., Halkier, B. A. 2001Long-distance phloem transport of glucosinolates in ArabidopsisPlant Physiol.127194201CrossRefPubMedGoogle Scholar
  31. Clark, J. B., Lister, G. R. 1975Photosynthetic action spectra of trees. II. The relationship of cuticle structure to the visible and ultraviolet spectral properties of needles from four coniferous speciesPlant Physiol.55407413Google Scholar
  32. Coyle, D. R., McMillin, J. D., Hall, R. B., Hart, E. R. 2003Effects of cottonwood leaf beetle (Coleoptera: Chrysomelidae) larval defoliation, clone, and season on Populus foliar phagostimulantsEnviron. Entomol.32452462Google Scholar
  33. Davis, D. G. 1978Effect of light quality and irradiance on development of Citrus mitis leaf cuticlesBot. Gaz.139390392CrossRefGoogle Scholar
  34. Degen, T., Städler, E. 1997Foliar form, colour and surface characteristics influence oviposition behaviour of the carrot flyEntomol. Exp. Appl.8399112CrossRefGoogle Scholar
  35. De Jong, R., Städler, E. 1999The influence of odour on the oviposition behaviour of the cabbage root flyChemoecology9151154CrossRefGoogle Scholar
  36. Derridj, S., Boutin, J. P., Fiala, V., Soldaat, L. L. 1996aPrimary metabolites composition of the leek leaf surface: Comparative study, impact on the host-plant selection by an ovipositing insectActa Bot. Gall.143125130Google Scholar
  37. Derridj, S., Wu, B. R., Stammitti, L., Garrec, J. P., Derrien, A. 1996bChemicals on the leaf surface, information about the plant available to insectsEntomol. Exp. Appl.80197201CrossRefGoogle Scholar
  38. Dickman, M. B., Ha, Y. S., Yang, Z., Adams, B., Huang, C. 2003A protein kinase from Colletotrichum trifolii is induced by plant cutin and is required for appressorium formationMol. Plant–Microb. Interact.16411421Google Scholar
  39. Dodd, R. S., Afzal-Rafii, Z. 2000Habitat-related adaptive properties of plant cuticular lipidsEvolution5414381444PubMedGoogle Scholar
  40. Dodd, R. S., Poveda, M. M. 2003Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communisBiochem. Syst. Ecol.3112571270CrossRefGoogle Scholar
  41. Duetting, P. S., Ding, H., Neufeld, J., Eigenbrode, S. D. 2003Plant waxy bloom onpeasaffects infection of pea aphids by Pandora neoaphidisJ. Invertebr. Pathol.84149158CrossRefPubMedGoogle Scholar
  42. Dutton, A., Mattiaci, L., Amadò, R., Dorn, S. 2002A novel function of the triterpene squalene in a tritrophic systemJ. Chem. Ecol.28103116CrossRefPubMedGoogle Scholar
  43. Edwards, P. B. 1982Do waxes of juvenile Eucalyptus leaves provide protection from grazing insects?Aust. J. Ecol.7347352Google Scholar
  44. Edwards, P. B., Wanjura, W. J. 1990Physical attributes of eucalypt leaves and the host range of chrysomelid beetlesSymp. Biol. Hung.39227236Google Scholar
  45. Edwards, D., Abbott, G. D., Raven, J. A. 1996Cuticles of early land plants: a palaeoecophysiological evaluationKerstiens, G. eds. Plant Cuticles: an Integrated Functional ApproachBIOS Scientific PublishersOxford132Google Scholar
  46. Eigenbrode, S. D. 1996Plant surface waxes and insect behaviourKerstiens, G. eds. Plant Cuticles: An Integrated Functional ApproachBIOS Scientific PublishersOxford201222Google Scholar
  47. Eigenbrode, S. D. 2004The effects of plant epicuticular waxy blooms on attachment and effectiveness of predatory insectsArthropod Struct. Develop.3391102CrossRefGoogle Scholar
  48. Eigenbrode, S. D., Espelie, K. E. 1995Effects of plant epicuticular lipids on insect herbivoresAnnu. Rev. Entomol.40171194CrossRefGoogle Scholar
  49. Eigenbrode, S. D., Jetter, R. 2002Attachment to plant surface waxes by an insect predatorIntegr. Comp. Biol.4210911099Google Scholar
  50. Eigenbrode, S. D., Kabalo, N. N. 1999Effects of Brassica oleracea waxblooms on predation and attachment by Hippodamia convergensEntomol. Exp. Appl.91125130CrossRefGoogle Scholar
  51. Eigenbrode, S. D., Castagnola, T., Roux, M. B., Steljes, L. 1996Mobility of three generalist predators is greater on cabbage with glossy leaf wax than on cabbage with a wax bloomEntomol. Exp. Appl.81335343CrossRefGoogle Scholar
  52. Eigenbrode, S. D., White, M., Tipton, J. L. 1999aDifferential cutting by leaf-cutter bees (Megachilidae : Hymenoptera) on leaves of redbud (Cercis canadensis) and Mexican redbuds (Cercis canadensis var. mexicana) with different surface waxesJ. Kans. Entomol. Soc.727381Google Scholar
  53. Eigenbrode, S. D., Kabalo, N. N., Stoner, K. A. 1999bPredation, behavior, and attachment by Chrysoperla plorabunda larvae on Brassica oleracea with different surface waxbloomsEntomol. Exp. Appl.90225235CrossRefGoogle Scholar
  54. Eigenbrode, S. D., Rayor, L., Chow, J., Latty, P. 2000Effects of wax bloom variation in Brassica oleracea on foraging by a vespid waspEntomol. Exp. Appl.97161166CrossRefGoogle Scholar
  55. Eller, B. M., Willi, P. 1977Die Bedeutung der Wachsausblühungen auf Blättern von Kalanchoe pumila Baker für die Absorption der GlobalstrahlungFlora166461474Google Scholar
  56. Ensikat, H. J., Neinhuis, C., Barthlott, W. 2000Direct access to plant epicuticular wax crystals by a new mechanical isolation methodInt. J. Plant Sci.161143148CrossRefPubMedGoogle Scholar
  57. Espelie, K. E. 1996Integrated case study: effects of maize leaf epicuticular lipids on insect pestsKerstiens, G. eds. Plant Cuticles: An Integrated Functional ApproachBIOS Scientific PublishersOxford223230Google Scholar
  58. Espelie, K. E., Bernays, E. A. 1989Diet-related difference in the cuticular lipids of Manduca sexta larvaeJ. Chem. Ecol.1520032018CrossRefGoogle Scholar
  59. Espelie, K. E., Brown, J. J. 1990Cuticular hydrocarbons of species which interact on four trophic levels: apple, Malus pumila Mill.; codling moth, Cydia pomonella L.; a hymenopteran parasitoid, Ascogaster quadridentata Wesmael; and a hyperparasite, Perilampus fulvicornis AshmeadComp. Biochem. Physiol.95131136CrossRefGoogle Scholar
  60. Espelie, K. E., Bernays, E. A., Brown, J. J. 1991Plant and insect cuticular lipids serve as behavioral cues for insectsArch. Insect Biochem. Physiol.17223233CrossRefGoogle Scholar
  61. Faini, F., Labbe, C., Coll, J. 1999Seasonal changes in chemical composition of epicuticular waxes from the leaves of Baccharis linearisBiochem. Syst. Ecol.27673679CrossRefGoogle Scholar
  62. Fauth, M., Schweizer, P., Buchala, A., Markstädter, C., Riederer, M., Kato, T., Kauss, H. 1998Cutin monomers and surface wax constituents elicit H2O2 in conditioned cucumber hypocotyl segments and enhance the activity of other H2O2 elicitorsPlant Physiol.11713731380CrossRefPubMedGoogle Scholar
  63. Federle, W., Maschwitz, U., Fiala, B., Riederer, M., Hölldobler, B. 1997Slippery ant-plants and skilful climbers: selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euphorbiaceae)Oecologia112217224CrossRefGoogle Scholar
  64. Federle, W., Rohrseitz, K., Hölldobler, B. 2000Attachment forces of ants measured with a centrifuge: Better ‘wax-runners’ have a poorer attachment to a smooth surfaceJ. Exp. Biol.203505512PubMedGoogle Scholar
  65. Fiala, V., Boutin, J. P., Barry, P., Derridj, S. 1993Les métabolites de surface foliaire(phylloplan): présence et rôle dans les relations plante–insecteActa Bot. Gall.140207216Google Scholar
  66. Ficke, A., Gadoury, D. M., Godfrey, D., Dry, I. B. 2004Host barriers and responses to Uncinula necator in developing grape berriesPhytopathology94438445Google Scholar
  67. Fischer, S., Samietz, J., Wackers, F. L., Dorn, S. 2004Perception of chromatic cues during host location by the pupal parasitoid Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae)Environ. Entomol.338187Google Scholar
  68. Gaume, L., Gorb, S., Rowe, N. 2002Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchersNew Phytol.156479489CrossRefGoogle Scholar
  69. Georgiou, G., Lin, S. C., Sharma, M. M. 1992Surface-active compounds from microorganismsBio-Technol.106065Google Scholar
  70. Giese, B. N. 1975Effects of light and temperature on the composition of epicuticular wax of Barley leavesPhytochemistry14921929CrossRefGoogle Scholar
  71. Grant, L., Daughtry, C. S. T., Vanderbilt, V. C. 1993Polarized and specular reflectance variation with leaf surface featuresPhysiol. Plant.8819CrossRefGoogle Scholar
  72. Grant, R. H., Heisler, G. M., Gao, W., Jenks, M. 2003Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristicsAgric. For. Meteorol.120127139CrossRefGoogle Scholar
  73. Green, P. W. C., Stevenson, P. C., Simmonds, M. S. J., Sharma, H. C. 2003Phenolic compounds on the pod-surface of pigeonpea, Cajanus cajan, mediate feeding behavior of Helicoverpa armigera larvaeJ. Chem. Ecol.29811821CrossRefPubMedGoogle Scholar
  74. Griffiths, D. W., Deighton, N., Birch, A. N. E., Patrian, B., Baur, R., Städler, E. 2001Identification of glucosinolates on the leaf surface of plants from Cruciferae and other closely related speciesPhytochemistry57693700CrossRefPubMedGoogle Scholar
  75. Gülz, P. G., Müller, E. 1992Seasonal variation in the composition of epicuticular waxes of Quercus robur leavesZ. Naturforsch.47c800806Google Scholar
  76. Gülz, P. G., Müller, E., Prasad, R. B. N. 1991Developmental and seasonal variations in the epicuticular waxes of Tilia tomentosa leavesPhytochemistry30769773CrossRefGoogle Scholar
  77. Hadley, N. F. 1981Cuticular lipids of terrestrial plants and arthropods: A comparison of their structure, composition, and waterproofing functionBiol. Rev.562347Google Scholar
  78. Hadley, N. F. 1989Lipid water barriers in biological systemsProg. Lipid Res.28133CrossRefPubMedGoogle Scholar
  79. Hadley, N. F. 1991Integumental lipids of plants and animals—comparative function and biochemistryAdv. Lipid Res.24303320PubMedGoogle Scholar
  80. Hadley, J. L., Smith, W. K. 1989Wind erosion of leaf surface wax in alpine timberline conifersArct. Alp. Res.21392398Google Scholar
  81. Hansch, C., Leo, A. 1979Substituent Constants for Correlation Analysis in Chemistry and BiologyWileyNew YorkGoogle Scholar
  82. Harris, M. O., Keller, J. E., Miller, J. R. 1987Responses to n-dipropyl disulfide by ovipositing onion fliesJ. Chem. Ecol.1312611277CrossRefGoogle Scholar
  83. Hartley, G. S., Graham-Bryce, I. J. 1980Physical Principles of Pesticide BehaviourAcademic PressLondonGoogle Scholar
  84. Hegde, Y., Kolattukudy, P. E. 1997Cuticular waxes relieve self-inhibition of germination and appressorium formation by the conidia of Magnaporthe griseaPhysiol. Mol. Plant Pathol.517584CrossRefGoogle Scholar
  85. Hegedüs, R., Horváth, G. 2004Polarizational colours could help polarization-dependent colour vision systems to discriminate between shiny and matt surfaces, but cannot unambiguously code surface orientationVis. Res.4423372348CrossRefPubMedGoogle Scholar
  86. Herrera-Campos, M., Lücking, R., Pérez, R. E., Campos, A., Colin, P. M., Peña, A. B. 2004The foliicolous lichen flora of Mexico. V. Biogeographical affinities, altitudinal preferences, and an updated checklist of 293 speciesLichenologist36309327CrossRefGoogle Scholar
  87. Hoad, S. P., Jeffree, C. E., Grace, J. 1992Effects of wind and abrasion on cuticular integrity in Fagus sylvatica L. and consequences for transfer of pollutants through leaf surfacesAgric. Ecosyst. Environ.42275289CrossRefGoogle Scholar
  88. Holloway, P. J. 1969Chemistry of leaf waxes in relation to wettingJ. Sci. Food20124128Google Scholar
  89. Holloway, P. J. 1970Surface factors affecting the wetting of leavesPestic. Sci.1156163Google Scholar
  90. Holloway, P. J. 1971The chemical and physical characteristic of leaf surfacesPreece, T. F.Dickinson, C. H. eds. Ecology of Leaf Surface MicroorganismsAcademic PressLondon3953Google Scholar
  91. Holloway, P. J. 1982aThe chemical constitution of plant cutinsCutler, D. F.Alvin, K. L.Price, C. E. eds. The Plant CuticleAcademic PressLondon4585Google Scholar
  92. Holloway, P. J. 1982bStructure and histochemistry of plant cuticular membranes: an overviewCutler, D. F.Alvin, K. L.Price, C. E. eds. The Plant CuticleAcademic PressLondon132Google Scholar
  93. Holmes, M. G., Keiller, D. R. 2002Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of speciesPlant Cell Environ.258593CrossRefGoogle Scholar
  94. Hopkins, R. J., Birch, A. N. E., Griffiths, D. W., Baur, R., Städler, E., McKinlay, R. G. 1997Leaf surface compounds and oviposition preference of Turnip root fly Delia floralis: the role of glucosinolate and nonglucosinolate compoundsJ. Chem. Ecol.23629643CrossRefGoogle Scholar
  95. Hubbell, S. P., Howard, J. J., Wiemer, D. F. 1984Chemical leaf repellency to an attine ant—seasonal distribution among potential host plant speciesEcology6510671076Google Scholar
  96. Inyang, E. N., Butt, T. M., Beckett, A., Archer, S. 1999The effect of crucifer epicuticular waxes and leaf extracts on the germination and virulence of Metarhizium anisopliae conidiaMycol. Res.103419426CrossRefGoogle Scholar
  97. Jeffree, C. E. 1986The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolutionJuniper, B.Southwood, R. eds. Insects and the Plant SurfaceE. ArnoldLondon23135Google Scholar
  98. Jeffree, C. E. 1996Structure and ontogeny of plant cuticlesKerstiens, G. eds. Plant Cuticles: An Integrated Functional ApproachBIOS Scientific PublishersOxford3382Google Scholar
  99. Jenks, M. A., Ashworth, E. N. 1999Plant epicuticular waxes: function, production, and geneticsJanick, J. eds. Horticultural Reviews, Vol. 23John Wiley and SonsNew York168Google Scholar
  100. Jenks, M. A., Gaston, C. H., Goodwin, M. S., Keith, J. A., Teusink, R. S., Wood, K. V. 2002Seasonal variation in cuticular waxes on Hosta genotypes differing in leaf surface glaucousnessHortscience37673677Google Scholar
  101. Jetter, R., Riederer, M. 1994Epicuticular wax crystals of nonacosan-10-ol: In vitro reconstitution and factors influencing crystal habitsPlanta195257270CrossRefGoogle Scholar
  102. Jetter, R., Riederer, M. 1995In vitro reconstitution of epicuticular wax crystals: Formation of tubular aggregates by long-chain secondary alkanediolsBot. Acta108111120Google Scholar
  103. Jetter, R., Schäffer, S. 2001Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf developmentPlant Physiol.12617251737CrossRefPubMedGoogle Scholar
  104. Jetter, R., Schäffer, S., Riederer, M. 2000Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus LPlant Cell Environ.23619628CrossRefGoogle Scholar
  105. Jones, T. H., Potts, B. M., Vaillancourt, R. E., Davies, N. W. 2002Genetic resistance of Eucalyptus globulus to autumn gum moth defoliation and the role of cuticular waxesCan. J. For. Res.3219611969CrossRefGoogle Scholar
  106. Juniper, B. E. 1995Waxes on plant surfaces and their interactions with insectsHamilton, R. J. eds. Waxes: Chemistry, Molecular Biology and FunctionsThe Oily PressWest Ferry, Dundee, Scotland157174Google Scholar
  107. Justus, K. A., Dosdall, L. M., Mitchell, B. K. 2000Oviposition by Plutella xylostella (Lepidoptera: Plutellidae) and effects of phylloplane waxinessJ. Econ. Entomol.9311521153PubMedGoogle Scholar
  108. Kanno, H., Harris, M. O. 2000aLeaf physical and chemical features influence selection of plant genotypes by Hessian flyJ. Chem. Ecol.2623352354CrossRefGoogle Scholar
  109. Kanno, H., Harris, M. O. 2000bPhysical features of grass leaves influence the placement of eggs within the plant by the Hessian flyEntomol. Exp. Appl.966980CrossRefGoogle Scholar
  110. Kelber, A., Thunell, C., Arikawa, K. 2001Polarisation-dependent colour vision in Papilio butterfliesJ. Exp. Biol.200424692480Google Scholar
  111. Kerner, A. 1879Die Schutzmittel der Blüthen gegen unberufene GästeVerlag der Wagner'schen UniversitätsbuchhandlungInnsbruckGoogle Scholar
  112. Klemm, O., Riederer, M., Frevert, T. 1987pH-response on leaves and isolated cuticles of Hedera helix L. after wetting with artificial rainwaterEnviron. Exp. Bot.27349355CrossRefGoogle Scholar
  113. Knoll, F. 1914über die Ursache des Ausgleitens der Insektenbeine an wachsbedeckten PflanzenteilenJahrb. Wiss. Bot.54448497Google Scholar
  114. Knoll, D., Schreiber, L. 1998Influence of epiphytic micro-organisms on leaf wettability: wetting of the upper leaf surface of Juglans regia and of model surfaces in relation to colonization by micro-organismsNew Phytol.140271282CrossRefGoogle Scholar
  115. Knoll, D., Schreiber, L. 2000Plant–microbe interactions: wetting of ivy (Hedera helix L.) leaf surfaces in relation to colonization by epiphytic microorganismsMicrob. Ecol.413342Google Scholar
  116. Kolattukudy, P. E. 1996Biosynthetic pathways of cutin and waxes, and their sensitivity to environmental stressesKerstiens, G. eds. Plant Cuticles: An Integrated Functional ApproachBIOS Scientific PublishersOxford83108Google Scholar
  117. Kolattukudy, P. E., Rogers, L. M., Li, D., Hwang, C.-S., Flaishman, M. A. 1995Surface signaling in pathogenesisProc. Natl. Acad. Sci. USA9240804087PubMedGoogle Scholar
  118. Kolb, C. A., Käser, M. A., Kopecký, J., Zotz, G., Riederer, M., Pfündel, E. E. 2001Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leavesPlant Physiol.127863875CrossRefPubMedGoogle Scholar
  119. Kolb, C. A., Kopecký, J., Riederer, M., Pfündel, E. E. 2003UV screening by phenolics in berries of grapevine (Vitis vinifera)Funct. Plant Biol.3011771186CrossRefGoogle Scholar
  120. Krauss, P., Markstädter, C., Riederer, M. 1997Attenuation of UV radiation by plant cuticles from woody speciesPlant Cell Environ.2010791085CrossRefGoogle Scholar
  121. Leo, A., Hansch, C., Elkins, D. 1971Partition coefficients and their usesChem. Rev.71525583CrossRefGoogle Scholar
  122. Lin, S., Binder, B. F., Hart, E. R. 1998Chemical ecology of cottonwood leaf beetle adult feeding preferences on PopulusJ. Chem. Ecol.2417911802CrossRefGoogle Scholar
  123. Lombarkia, N., Derridj, S. 2002Incidence of apple fruit and leaf surface metabolites on Cydia pomonella ovipositionEntomol. Exp. Appl.1047987CrossRefGoogle Scholar
  124. Lyman, W. J., Reehl, W. F., Rosenblatt, D. H. 1990Handbook of Chemical Property Estimation MethodsAmerican Chemical SocietyWashington, DCGoogle Scholar
  125. Macey, M. J. K. 1974Wax synthesis in Brassica oleracea as modified by trichloroacetic acid and glossy mutationsPhytochemistry1313531358CrossRefGoogle Scholar
  126. MacKay, D., Bobra, A., Shiu, W. Y., Yalkowsky, S. H. 1980Relationships between aqueous solubility and octanol–water partition coefficientsChemosphere9701711CrossRefGoogle Scholar
  127. Major, D. J., McGinn, S. M., Gillespie, T. J., Baret, F. 1993A technique fordeterminationofsingle leaf reflectance and transmittance in field studiesRemote Sens. Environ.43209215CrossRefGoogle Scholar
  128. Marazzi, C., Patrian, B., Städler, E. 2004Secondary metabolites of the leaf surface affected by sulphur fertilisation and perceived by the cabbage root flyChemoecology148794CrossRefGoogle Scholar
  129. Markstädter, C., Federle, W., Jetter, R., Riederer, M., Hölldobler, B. 2000Chemical composition of the slippery epicuticular wax blooms on Macaranga (Euphorbiaceae) ant-plantsChemoecology103340CrossRefGoogle Scholar
  130. McAuslane, H. J., Simmons, A. M., Jackson, D. M. 2000Parasitism of Bemisia argentifolii on collard with reduced or normal leaf waxFlorida Entomol.83428437Google Scholar
  131. Mendgen, K. 1996Fungal attachment and penetrationKerstiens, G. eds. Plant Cuticles: An Integrated Functional ApproachBIOS Scientific PublishersOxford175188Google Scholar
  132. Mendgen, K., Hahn, M., Deising, H. 1996Morphogenesis and mechanisms of penetration by plant pathogenic fungiAnnu. Rev. Phytopathol.34367386CrossRefPubMedGoogle Scholar
  133. Mercier, J., Lindow, S. E. 2000Role of leaf surface sugars in colonization of plants by bacterial epiphytesAppl. Environ. Microbiol.66369374PubMedGoogle Scholar
  134. Mewis, I. Z., Ulrich, C., Schnitzler, W. H. 2002The role of glucosinolates and their hydrolysis products in oviposition and host-plant finding by cabbage webworm, Hellula undalisEntomol. Exp. Appl.105129139CrossRefGoogle Scholar
  135. Morris, B. D., Foster, S. P., Harris, M. O. 2000Identification of 1-octacosanal and 6-methoxy-2-benzoxazolinone from wheat as ovipositional stimulants for Hessian fly, Mayetiola destructorJ. Chem. Ecol.26859873CrossRefGoogle Scholar
  136. Müller, C., Hilker, M. 2001Host finding and oviposition behavior in a chrysomelid specialist—the importance of host plant surface waxesJ. Chem. Ecol.27985994CrossRefPubMedGoogle Scholar
  137. Neinhuis, C., Barthlott, W. 1998Seasonal changes of leaf surface contamination in beech,oak, and ginkgo in relation to leaf micromorphology and wettabilityNew Phytol.1389198CrossRefGoogle Scholar
  138. Nobel, P. S. 1991Physicochemical and Environmental Plant PhysiologyAcademic PressSan DiegoGoogle Scholar
  139. Noldus, L. P. J. J., Potting, R. P. J., Barendregt, H. E. 1991Moth sex pheromone adsorption to leaf surface—bridge in time for chemical spiesPhysiol. Entomol.16329344Google Scholar
  140. Otten, A., Herminghaus, S. 2004How plants keep dry: A physicist's point of viewLangmuir2024052408CrossRefPubMedGoogle Scholar
  141. Pallas, N. R. 1997A review of the measurement of wettability for agricultural applicationsPestic. Formul. Applic. Systems17/1328165186Google Scholar
  142. Percy, K. E., Awmack, C. S., Lindroth, R. L., Kubiske, M. E., Kopper, B. J., Isebrands, J. G., Pregitzer, K. S., Hendrey, G. R., Dickson, R. E., Zak, D. R., Oksanen, E., Sober, J., Harrington, R., Karnosky, D. F. 2002Altered performance of forest pests under atmospheres enriched by CO2 and O-3Nature420403407CrossRefPubMedGoogle Scholar
  143. Peter, A. J., Shanower, T. G. 2001Role of plant surface in resistance to insect herbivoresAnanthakrishnan, T. N. eds. Insects and Plant Defence DynamicsScience Publishers, Inc.Enfield, NH, USA107132Google Scholar
  144. Powell, G., Maniar, S. P., Pickett, J. A., Hardie, J. 1999Aphid responses to non-host epicuticular lipidsEntomol. Exp. Appl.91115123CrossRefGoogle Scholar
  145. Premachandra, G. S., Hahn, D. T., Joly, R. J. 1993A simple method for determination of abaxial and adaxial epicuticular wax loads in intact leaves of Sorghum bicolor LCan. J. Plant Sci.73521524Google Scholar
  146. Prokopy, R. J., Owens, E. D. 1983Visual detection of plants by herbivorous insectsAnnu. Rev. Entomol.28337364CrossRefGoogle Scholar
  147. Raina, A. K. 1981Movement, feeding behaviour and growth of larvae of the sorghum wheat fly, Atherigona soccataIns. Sci. Appl.27781Google Scholar
  148. Rapley, L. P., Allen, G. R., Potts, B. M. 2004Susceptibility of Eucalyptus globulus to Mnesampela privata defoliation in relation to a specific foliar wax compoundChemoecology14157163Google Scholar
  149. Reed, D. W., Tukeyr, H. B.,Jr. 1982Light intensity and temperature effects on epicuticular wax morphology and internal cuticle ultrastructure of carnation (Dianthus caryophyllus) and Brussels sprouts (Brassica oleracea) leaf cuticlesJ. Am. Hort. Soc.107417420Google Scholar
  150. Reifenrath, K., Riederer, M., Müller, C. 2005Leaf surface wax layers of Brassicaceae lack feeding stimulants for Phaedon cochleariaeEntomol. Exp. Appl.1154150CrossRefGoogle Scholar
  151. Riedel, M., Eichner, A., Jetter, R. 2003Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchersPlanta2188797CrossRefPubMedGoogle Scholar
  152. Riederer, M. 1989The cuticles of conifers: Structure, composition and transport propertiesSchulze, E.-D.Lange, O. L.Oren, R. eds. Forest Decline and Air PollutionSpringer-VerlagBerlin, Heidelberg157192Google Scholar
  153. Riederer, M. 1990Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system: discussion of a fugacity-based modelEnviron. Sci. Technol.24829837CrossRefGoogle Scholar
  154. Riederer, M. 1995Partitioning and transport of organic chemicals between the atmospheric environment and leavesTrapp, S.McFarlane, J. C. eds. Plant Contamination. Modeling and Simulation of Organic Chemical ProcessesLewis PublishersBoca Raton153190Google Scholar
  155. Riederer, M. 2004Uptake and transport of xenobioticsElstner, E. F.Hock, B. eds. Plant ToxicologyMarcel DekkerNew York131150Google Scholar
  156. Riederer, M., Markstädter, C. 1996Cuticular waxes: a critical assessment of current knowledgeKerstiens, G. eds. Plant Cuticles: An Integrated Functional ApproachBIOS Scientific PublishersOxford189200Google Scholar
  157. Riederer, M., Schönherr, J. 1984Accumulation and transport of (2,4-dichlorophenoxy)acetic acid in plant cuticles. 1. Sorption in the cuticular membrane and its componentsEcotoxicol. Environ. Saf.8236247CrossRefPubMedGoogle Scholar
  158. Riederer, M., Schönherr, J. 1985Accumulation and transport of (2,4-dichlorophenoxy)acetic acid in plant cuticles: II. Permeability of the cuticular membraneEcotoxicol. Environ. Saf.9196208CrossRefPubMedGoogle Scholar
  159. Riederer, M., Schönherr, J. 1988Development of plant cuticles: fine structure and cutin composition of Clivia miniata Reg. leavesPlanta174127138CrossRefGoogle Scholar
  160. Riederer, M., Schreiber, L. 1995Waxes—the transport barriers of plant cuticlesHamilton, R. J. eds. Waxes: Chemistry, Molecular Biology and FunctionsThe Oily PressWest Ferry, Dundee, Scotland130156Google Scholar
  161. Riederer, M., Schreiber, L. 2001Protecting against water loss: analysis of the barrier properties of plant cuticlesJ. Exp. Bot.5220232032CrossRefPubMedGoogle Scholar
  162. Riederer, M., Daiss, A., Gilbert, N., Köhle, H. 2002Semi-volatile organic compounds at the leaf/atmosphere interface: numerical simulation of dispersal and foliar uptakeJ. Exp. Bot.5318151823CrossRefPubMedGoogle Scholar
  163. Roda, A. L., Oldham, N. J., Svatos, A., Baldwin, I. T. 2003Allometric analysis of the induced flavonols on the leaf surface of wild tobacco (Nicotiana attenuata)Phytochemistry62527536CrossRefPubMedGoogle Scholar
  164. Roessingh, P., Städler, E. 1990Foliar form, colour and surface characteristics influenceoviposition behaviour in the cabbage root fly Delia radicumEntomol. Exp. Appl.5793100CrossRefGoogle Scholar
  165. Roessingh, P., Städler, E., Fenwick, G. R., Lewis, J. A., Nielsen, J. K., Hurter, J., Ramp, T. 1992Oviposition and tarsal chemoreceptors of the cabbage root fly are stimulated by glucosinolates and host plant-extractsEntomol. Exp. Appl.65267282Google Scholar
  166. Rostás, M., Hilker, M. 2002Feeding damage by larvae of the mustard leaf beetle deters conspecific females from oviposition and feedingEntomol. Exp. Appl.103267277CrossRefGoogle Scholar
  167. Rutledge, C. E., Robinson, A. P., Eigenbrode, S. D. 2003Effects of a simple plant mutation on the arthropod community and the impacts of predators on a principle insect herbivoreOecologia1353950PubMedGoogle Scholar
  168. Salatino, A., Sugayama, R. L., Negri, G., Vilegas, W. 1998Effect of constituents of the foliar wax of Didymopanax vinosum on the foraging activity of the leaf-cutting ant Atta sexdens rubropilosaEntomol. Exp. Appl.86261266CrossRefGoogle Scholar
  169. Schmidt, H. W., Schönherr, J. 1982Development of plant cuticles: occurrence and role of nonester bonds in cutin of Clivia miniata leavesPlanta156380384CrossRefGoogle Scholar
  170. Schönherr, J. 2002A mechanistic analysis of penetration of glyphosate salts across astomatous cuticular membranesPest Manag. Sci.58343351CrossRefPubMedGoogle Scholar
  171. Schönherr, J., Riederer, M. 1989Foliar penetration and accumulation of organic chemicals in plant cuticlesRev. Environ. Contam. Toxicol.108170Google Scholar
  172. Schoonhoven, L. M., Jermy, T., Van Loon, J. J. A. 1998Insect–Plant Biology. From Physiology to EvolutionChapman & HallLondonGoogle Scholar
  173. Schütt, P., Schuck, H. J. 1973Seasonal variation in the composition of cuticular waxes in Pinus sylvestrisFlora162206214Google Scholar
  174. Schwab, M., Noga, G., Barthlott, W. 1995The significance of epicuticular waxes for defence of pathogens as shown for Botrytis cinerea infections in Kohlrabi and pea plantsGartenbauwissenschaft60102109Google Scholar
  175. Schwarzenbach, R. P., Gschwend, P. M., Imboden, D. M. 1993Environmental Organic ChemistryJohn Wiley & Sons Inc.New YorkGoogle Scholar
  176. Shepherd, T., Robertson, G. W., Griffiths, D. W., Birch, A. N. E., Duncan, G. 1995Effects of environment on the composition of epicuticular wax from kale and swedePhytochemistry40407417CrossRefGoogle Scholar
  177. Shepherd, T., Robertson, G. W., Griffiths, D. W., Birch, A. N. E. 1999aEpicuticular wax composition in relation to aphid infestation and resistance in red raspberry (Rubus idaeus L.)Phytochemistry5212391254CrossRefGoogle Scholar
  178. Shepherd, T., Robertson, G. W., Griffiths, D. W., Birch, A. N. E. 1999bEpicuticular wax ester and triacylglycerol composition in relation to aphid infestation and resistance in red raspberry (Rubus idaeus L.)Phytochemistry5212551267CrossRefGoogle Scholar
  179. Slaton, M. R., Hunt, E. R., Smith, W. K. 2001Estimating near-infrared leaf reflectance from leaf structural characteristicsAm. J. Bot.88278284PubMedGoogle Scholar
  180. Spencer, J. L. 1996Waxes enhance Plutella xylostella oviposition in response to sinigrin and cabbage homogenatesEntomol. Exp. Appl.81165173CrossRefGoogle Scholar
  181. Spencer, J. L., Pillai, S., Bernays, E. A. 1999Synergism in the oviposition behavior of Plutella xylostella: sinigrin and wax compoundsJ. Insect Behav.12483500CrossRefGoogle Scholar
  182. Städler, E. 1992Behavioral responses of insects to plant secondary compoundsRosenthal, G. A.Berenbaum, M. R. eds. Herbivores: their Interactions with Secondary Plant MetabolitesAcademic PressSan Diego4588Google Scholar
  183. Städler, E. 2002Plant chemical cues important for egg deposition by herbivorous insectsHilker, M.Meiners, T. eds. Chemoecology of Insect Eggs and Egg DepositionBlackwell PublishingBerlin171204Google Scholar
  184. Steinbauer, M. J., Schiestl, F. P., Davies, N. W. 2004Monoterpenes and epicuticular waxes help female autumn gum moth differentiate between waxy and glossy Eucalyptus and leaves of different agesJ. Chem. Ecol.3011171142CrossRefPubMedGoogle Scholar
  185. Steinmüller, D., Tevini, M. 1985Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plantsPlanta164557564CrossRefGoogle Scholar
  186. Stork, N. E. 1980Role of waxblooms in preventing attachment to brassicas by the mustard beetle, Phaedon cochleariaeEntomol. Exp. Appl.28100107CrossRefGoogle Scholar
  187. Sugayama, R. L., Salatino, A. 1995Influence of leaf epicuticular waxes from cerrado species on substrate selection by Atta sexdens rubropilosaEntomol. Exp. Appl.746369Google Scholar
  188. Szafranek, B., Malinski, E., Szafranek, J. 1998The sesquiterpene composition of leaf cuticular neutral lipids of ten Polish varieties of Solanum tuberosumJ. Sci. Food Agric.76588592CrossRefGoogle Scholar
  189. Talley, S. M., Coley, P. D., Kursar, T. A. 2002Antifungal leaf-surface metabolites correlate with fungal abundance in sagebrush populationsJ. Chem. Ecol.2821412168CrossRefPubMedGoogle Scholar
  190. Tollsten, L., Bergström, G. 1988Headspace volatiles of whole plants and macerated plant parts of Brassica and SinapisPhytochemistry2720732077CrossRefGoogle Scholar
  191. Upadhyaya, M. K., Furness, N. H. 1994Influence of light intensity and water stress on leaf surface characteristics of Cynoglossum officinale, Centaurea spp., and Tragopogon sppCan. J. Bot.7213791386Google Scholar
  192. Von Wettstein-Knowles, P., Avato, P., Mikkelsen, J. D. 1980Light promotes synthesis of the very long fatty acyl chains in maize waxMazliak, P.Benveniste, P.Costes, C.Douce, R. eds. Biogenesis and Function of Plant LipidsElsevier/North-Holland Biomedical PressAmsterdam271274Google Scholar
  193. Wagner, P., Furstner, R., Barthlott, W., Neinhuis, C. 2003Quantitative assessment to the structural basis of water repellency in natural and technical surfacesJ. Exp. Bot.5412951303CrossRefPubMedGoogle Scholar
  194. Walton, T. J. 1990Waxes, cutin and suberinHarwood, J. L.Boyer, J. eds. Lipids, Membranes and Aspects of PhotobiologyAcademic PressLondon105158Google Scholar
  195. Watanabe, T., Yamaguchi, I. 1991aStudies on wetting phenomena on plant leaf surfaces. 1. Evaluation of wettability of plant leaf surfacesJ. Pestic. Sci.16491498Google Scholar
  196. Watanabe, T., Yamaguchi, I. 1991bWettability characteristics of crop leaf surfacesJ. Pestic. Sci.16651663Google Scholar
  197. Watanabe, T., Yamaguchi, I. 1992Studies on wetting phenomena on plant leaf surfaces. 3. A retention model for droplets on solid surfacesJ. Pestic. Sci.34273279Google Scholar
  198. Wiedemann, P., Neinhuis, C. 1998Biomechanics of isolated plant cuticlesBot. Acta1112834Google Scholar
  199. Woodhead, S., Chapman, R. F. 1986Insect behaviour and the chemistry of plant surface waxesJuniper, B.Southwood, R. eds. Insects and the Plant SurfaceArnoldLondon123135Google Scholar
  200. Yalkowski, S. H., Banerjee, S. 1992Aqueous SolubilityMarcel Dekker Inc.New YorkGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Julius-von-Sachs-Institut für BiowissenschaftenUniversität WürzburgWürzburgGermany

Personalised recommendations