Journal of Chemical Ecology

, Volume 31, Issue 10, pp 2323–2341 | Cite as

Surface Composition of Myrmecophilic Plants: Cuticular Wax and Glandular Trichomes on Leaves of Macaranga tanarius

  • Ortwin Guhling
  • Christian Kinzler
  • Michael Dreyer
  • Gerhard Bringmann
  • Reinhard JetterEmail author


Primary plant surfaces, covered with cuticles consisting of cutin and waxes, are important substrates for interaction with insects. The composition of leaf surfaces of the myrmecophilic plant Macaranga tanarius was studied. The prenylated flavanone nymphaeol-C was identified in surface extracts and was localized exclusively in glandular trichomes on the abaxial leaf side. The epidermal pavement cells surrounding these trichomes were covered with a smooth film of epicuticular wax from which few small wax crystals protruded. The epicuticular wax amounted to approximately 8 μg cm−2, corresponding to 85% of the wax load on the adaxial as well as the abaxial leaf sides. The epicuticular wax mixtures from both leaf surfaces contained more than 70% primary alcohols, 14% fatty acids, 2% aldehydes, and traces of alkyl acetates, with chain lengths ranging from C20 to C38. In contrast, the intracuticular wax layer was largely dominated by triterpenoid alcohols α-amyrin, β-amyrin, and lupeol. Consequently, these characteristic compounds are not available for direct contact with insects on the plant surface.

Key Words

Epicuticular wax leaf surface plant insect interactions glandular trichomes isoprenoids flavanones nymphaeol-C Macaranga tanarius 



The authors thank Markus Riederer (University of Würzburg, Department of Botany II) and Walter Federle (University of Würzburg, Department of Zoology II) for fruitful discussions. Technical assistance by staff of the Botanical Garden of the University of Würzburg is gratefully acknowledged. Wilfried Schwab and Daniel Abanda (University of Würzburg, Department of Food Chemistry) provided advice with the gland isolation protocols. This work was supported by the SFB 567 “Mechanisms of interspecific interactions of organisms” and by a grant from the Fonds der Chemischen Industrie to G.B.


  1. Baker, J. A. 1934Notes on the biology of Macaranga spp.Gard. Bull.86368Google Scholar
  2. Baker, E. 1982Chemistry and morphology of plant epicuticular waxesCutler, D. F.Price, C. E. eds. The Plant Cuticle, Linnean Society Symposium Series. Vol. 10Academic PressLondon139165Google Scholar
  3. Baur, P. 1998Mechanistic aspects of foliar penetration of agrochemicals and the effect of adjuvantsRec. Res. Devel. Agricult. Food Chem.2809837Google Scholar
  4. Eigenbrode, S. D., Espelie, K. E. 1995Effects of plant epicuticular lipids on insect herbivoresAnnu. Rev. Entomol.40171194CrossRefGoogle Scholar
  5. Elias, T. 1983Extrafloral nectarines: their structure and distributionBentley, B. L.Elias, T. S. eds. The Biology of NectariesColumbia University PressNew York174203Google Scholar
  6. Federle, W., Maschwitz, U., Fiala, B., Riederer, M., Hölldobler, B. 1997Slippery ant–plants and skilful climbers: selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euphorbiaceae)Oecologia112217224CrossRefGoogle Scholar
  7. Federle, W., Rohrseitz, K., Hölldobler, B. 2000Attachment forces of ants measured with a centrifuge: better ‘wax-runners’ have a poorer attachment to a smooth surfaceJ. Exp. Biol.203505512PubMedGoogle Scholar
  8. Fiala, B., Grunsky, H., Maschwitz, U., Linsenmair, K. E. 1994Diversity of ant–plant interactions: protective efficacy in Macaranga species with different degrees of ant associationOecologia97186192CrossRefGoogle Scholar
  9. Fiala, B., Jakob, A., Maschwitz, U., Linsenmair, K. E. 1999Diversity, evolutionary specialization and geographic distribution of a mutualistic ant–plant complex: Macaranga and Crematogaster in Southeast AsiaBiol. J. Linn. Soc.66305331CrossRefGoogle Scholar
  10. Hashidoko, Y., Urashima, M. 1995Efficient preparation of browining-free glandular trichome tissues from the surface of leaves of Rosa rugosa ThunbPlant Cell Physiol.36127132Google Scholar
  11. Heil, M., Fiala, B., Kaiser, W., Linsenmair, K. E. 1998Chemical contents of Macaranga food bodies: adaptations to their role in ant attraction and nutritionFunct. Ecol.12117 122CrossRefGoogle Scholar
  12. Heil, M., Koch, T., Hilpert, A., Fiala, B., Boland, W., Linsenmair, K. E. 2001Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acidProc. Natl. Acad. Sci. U.S.A.9810831088CrossRefPubMedGoogle Scholar
  13. Heil, M., Delsinne, T., Hilpert, A., Schürkens, S., Andary, C., Linsenmair, K. E., Sousa, S. M., Mckey, D. 2002Reduced chemical defence in ant–plants? A critical re-evaluation of a widely accepted hypothesisOikos99457468CrossRefGoogle Scholar
  14. Inui, Y., Itioka, T., Murase, K., Yamaoka, R., and Itino, T. 2001. Chemical recognition of partner plant species by foundress ant queens in Macaranga-Crematogaster myrmecophytism. J. Chem. Ecol. 27:2029–2040.Google Scholar
  15. Jeffree, C. 1986The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolutionJuniper, B.Southwood, R. eds. Insects and the Plant SurfaceE. ArnoldLondon23135Google Scholar
  16. Jetter, R., Schäffer, S. 2001Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf developmentPlant Physiol.12617251737CrossRefPubMedGoogle Scholar
  17. Jetter, R., Schäffer, S., Riederer, M. 2000Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus L.Plant Cell Environ.23619628CrossRefGoogle Scholar
  18. Kiehlmann, E., Biradha, K., Domasevitch, K., Zaworotko, M. 1999Crystal structures of dihydroquercetin 3-acetate and dihydroquercetin 3,3′,4′,7-tetraacetate: hydrogen bonding in 5-hydroxyflavanonesCan. J. Chem.7714361443CrossRefGoogle Scholar
  19. Markstädter, C., Federle, W., Jetter, R., Riederer, M., Hölldobler, B. 2000Chemical composition of the slippery epicuticular wax blooms on Macaranga (Euphorbiaceae) ant–plantsChemoecology103340CrossRefGoogle Scholar
  20. Riedel, M., Eichner, A., Jetter, R. 2003Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchersPlanta2188797CrossRefPubMedGoogle Scholar
  21. Schoonhoven, L. M., Jermy, T., Loon, J. J. A. 1998Insect–Plant Biology. From Physiology to EvolutionChapman and HallLondonGoogle Scholar
  22. Tseng, M.-H., Chou, C.-H., Chen, Y.-M., Kuo, Y.-H. 2001Allelopathic prenylflavanones from the fallen leaves of Macaranga tanariusJ. Nat. Prod.64827828CrossRefPubMedGoogle Scholar
  23. Tseng, M.-H., Kuo, Y.-H., Chen, Y.-M., Chou, C.-H. 2003Allelopathic potential of Macaranga tanarius (L.) Muell.-ArgJ. Chem. Ecol.2912691286CrossRefPubMedGoogle Scholar
  24. Tulloch, A. 1976Chemistry of waxes of higher plantsKolattukudy, P. E. eds. Chemistry and Biochemistry of Natural WaxesElsevierNew York235287Google Scholar
  25. Turner, G. W., Gershenzon, J., Croteau, R. 2000Development of peltate glandular trichomes of peppermintPlant Physiol.124665679CrossRefPubMedGoogle Scholar
  26. Vogg, G., Fischer, S., Leide, J., Emmanuel, E., Jetter, R., Levy, A. A., Riederer, M. 2004Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthaseJ. Exp. Bot.5514011410CrossRefPubMedGoogle Scholar
  27. Walton, T. J. 1990Waxes, cutin and suberinMethods Plant Biochem.4106158Google Scholar
  28. Werker, E. 1993Function of essential oil-secreting glandular hairs in aromatic plants of the Lamiaceae—a reviewFlavour Fragr. J.8249255Google Scholar
  29. Wollenweber, E., Dietz, V. H. 1981Occurrence and distribution of free flavonoid aglycones in plantsPhytochemistry20869932CrossRefGoogle Scholar
  30. Yakushijin, K., Shibayama, K., Murata, H., Furukawa, H. 1980New prenylflavanones from Hernandia nymphaefolia (Presl) KubitzkiHeterocycles14397402Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Ortwin Guhling
    • 1
  • Christian Kinzler
    • 1
  • Michael Dreyer
    • 2
  • Gerhard Bringmann
    • 2
  • Reinhard Jetter
    • 3
    Email author
  1. 1.Julius-von-Sachs Institut für BiowissenschaftenUniversität WürzburgWürzburgGermany
  2. 2.Institut für Organische ChemieUniversität WürzburgWürzburgGermany
  3. 3.Department of Botany and Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations