Journal of Chemical Ecology

, Volume 31, Issue 10, pp 2309–2322 | Cite as

Analysis of Biogenic Volatile Organic Compounds in Zucchini Flowers: Identification of Scent Sources

  • A. Mena Granero
  • F. J. Egea Gonzalez
  • J. M. Guerra Sanz
  • J. L. Martínez Vidal


An analytical method has been applied to determine volatile organic compounds in zucchini flowers. In a first step, the analytical method was applied to characterize the main scents emitted by whole male and female living flowers of three main commercial cultivars of zucchini (Tosca, Chapin, and Consul). In a second step, the compounds were quantified in different parts of the living flowers to identify the contribution of nectar, petals, anther, and stigma to the aroma profile of the flower. The analytical method is based on headspace solid-phase microextraction coupled on-line with GC and tandem MS detection (HS-SPME-GC-MS/MS). A reference compound is added to samples as part of the field quality control procedure to check for likely analyte losses or sample decomposition. The reference compound also acts as an internal standard for quantification purposes. Results have been statistically studied applying principal component analysis (PCA), which shows that three components explain more than 91% of the variance. PCA emphasizes the great importance of nectar as being the main source of 1,4-dimethoxybenzene and 1,2,4-trimethoxybenzene, which influence the aroma profile of flowers. The remaining components can be accounted for by emissions from petals and sexual organs (adroecium and gynoecium anthers or stigmas).

Key Words

zucchini nectar headspace solid-phase microextraction tandem mass spectrometry biogenic volatile organic compounds flower aroma PCA 



Authors acknowledge to Junta de Andalucía the financial support through the Project Grant PIA-03-032 and to INIA for their support with the Project Grant RTA03-087. Thanks to AgroBio S.L. for the interest showed on the project.


  1. Augusto, F., Leite e Lopes, A., Alcaraz Zini, C. 2003Sampling and sample preparation for analysis of aromas and fragrancesTrends Anal. Chem.22160169CrossRefGoogle Scholar
  2. Bergström, G., Dobson, H. E. M., Groth, I. 1995Spatial fragrance patterns within the flowers of Ranunculus acris (Ranunculaceae)Plant Syst. Evol.195221242CrossRefGoogle Scholar
  3. Díaz-Maroto, M. C., Pérez-Coello, M. S., Cabezudo, M. D. 2002Effect of drying method on the volatiles in bay leaf (Laurus nobilis L.)J. Agric. Food Chem.5045204524CrossRefPubMedGoogle Scholar
  4. Dobson, H. E. M. 1991Analysis of flower and pollen volatilesLinskens, H. F.Jackson, J. F. eds. Essential Oil and Waxes. Modern Methods of Plant AnalysisSpringerBerlin231251Google Scholar
  5. Dobson, H. E. M., Bergström, G. 2000The ecology and evolution of pollen odorsPlant Syst. Evol.2226387CrossRefGoogle Scholar
  6. Dobson, H. E. M., Bergstrom, G., Groth, I. 1990Differences in fragrance chemistry between flower parts of Rosa rugosa Thunb. (Rosaceae)Isr. J. Botan. Basic Appl. Plant Sci.39143156Google Scholar
  7. Dudareva, N., Pichersky, E. 2000Biochemical and molecular genetic aspects of floral scentsPlant Physiol.122627633CrossRefPubMedGoogle Scholar
  8. Egea González, F. J., Mena Granero, A., Glass, C. R., Garrido Frenich, A., Martínez Vidal, J. L. 2004Screening method for pesticides in air by gas chromatography/tandem mass spectrometryRapid Commun. Mass Spectrom.18537543CrossRefPubMedGoogle Scholar
  9. Flamini, G., Cioni, P. L., Morelli, I. 2002Differences in the fragrances of pollen and different floral parts of male and female flowers of Laurus nobilisJ. Agric. Food. Chem.5046474652CrossRefPubMedGoogle Scholar
  10. González Rodríguez, M. J., Arrebola Liébanas, F. J., Garrido Frenich, A., Martínez Vidal, J. L. 2002Evaluation of low-pressure gas chromatography linked to ion-trap tandem mass spectrometry for the fast trace analysis of multiclass pesticide residuesRapid Commun. Mass Spectrom1612161224CrossRefPubMedGoogle Scholar
  11. Henning, J. A., Peng, Y. S., Montague, M. A., Teuber, L. R. 1999Honey bee (Hymenoptera: Apidae) behavioural response to primary alfalfa (Rosales: Fabaceae) floral volatilesJ. Econ. Entomol.285233239Google Scholar
  12. Hernández Torres, M. E., Egea González, F. J., Castro Cano, M. L., Moreno Frías, M., Martínez Vidal, J. L. 2002Residues of methamidofos malathion and methiocarb in greenhouse cropsJ. Agric. Food Chem.5011721177CrossRefPubMedGoogle Scholar
  13. Kim, N. S., Lee, D. S. 2002Comparison of different extraction methods for the analysis of fragrances from Lavandula species by gas chromatography–mass spectrometryJ. Chromatogr. A.9823147CrossRefPubMedGoogle Scholar
  14. Laloi, D., Sandoz, J. C., Picard-Nizou, A. L., Marchesi, A., Pouvreau, A., Tasei, J. N., Poppy, G., Pham-Delegue, M. H. 1999Olfactory conditioning of the proboscis extension in bumble beesEntomol. Exp. Appl.90123129CrossRefGoogle Scholar
  15. Martínez Vidal, J. L., Martínez Galera, M., Egea González, F. J., Castro Cano, M. L. 1998Diminution of chlorpyrifos and chlorpyrifos oxon in tomatoes and green beans grown in greenhousesJ. Agric. Food Chem.4614401444CrossRefGoogle Scholar
  16. Mena Granero, A., Egea González, F. J., Garrido Frenich, A., Guerra Sanz, J. M., Martínez Vidal, J. L. 2004Single step determination of fragrances in flowers by coupling headspace solid-phase microextraction low-pressure gas chromatography–tandem mass spectrometryJ. Chromatogr. A.1045173179CrossRefPubMedGoogle Scholar
  17. Metcalf, R. L, Lampman, R. L. 1991Evolution of diabroticite rootworm beetle (Chrysomelidai) receptors for Cucurbita blossom volatilesAppl. Biol. Sci.8818691872Google Scholar
  18. Metcalf, R. L., Lampman, R. L., Lewis, P. A. 1998Comparative kairomonal chemical ecology of diabrotice beetles (Coleoptera, Chrysomelidae: Galerucinae: Luperini: Diabroticina) in a reconstituted tallgrass prairie ecosystemEcol. Behav.91881890Google Scholar
  19. Pawliszyn, J. 1995New directions in samples preparation of organic compoundsTrends Anal. Chem.14113122Google Scholar
  20. Pawliszyn, J. 1997Theory and PracticeWiley-VCHNew YorkGoogle Scholar
  21. Pawliszyn, J. 1999Solid-Phase MicroextractionRSCCornwall, UKGoogle Scholar
  22. Prosen, H., Zupancic-Kral, L. 1999Solid-phase microextractionTrends Anal. Chem.18272282CrossRefGoogle Scholar
  23. Roldan-Serrano, A. S., Guerra-Sanz, J. M. 2005Reward attractions of zucchini flowers (Cucurbita pepo, L.) to bumblebees (Bombus terrestris L.)Eur. J. Hortic. Sci.702328Google Scholar
  24. Roldán-Serrano, A. S., Guerra-Sanz, J. M., Ortuño-Izquierdo, M. J. 2002Flower attractiveness to bumble bees (Bombus terrestris L.) in zucchini (Cucurbita pepo, L.)Maynard, D. N. eds. CucurbitaceaeASHS PressAlexandria, VA 22314343348Google Scholar
  25. Scheppers Wiercinski, S. A. 1999Solid-Phase Microextraction Practical GuideMarcel DekkerNew YorkGoogle Scholar
  26. Sides, A., Robards, K., Helliwell, S. 2000Developments in extraction techniques and their application to analysis of volatiles in foodsTrends Anal. Chem.19322329CrossRefGoogle Scholar
  27. Stefen, A., Pawlyszyn, J. 1996Analysis of flavour volatiles using headspace solid phase microextractionJ. Agric. Food Chem.4421872193CrossRefGoogle Scholar
  28. Stephen, D. M. 2000Field testing for pollen allelopathyJ. Chem. Ecol.2621552172CrossRefGoogle Scholar
  29. Ware, A. B., Compton, S. G. 1994Responses of fig wasps to host plant volatile cuesJ. Chem. Ecol.20785802CrossRefGoogle Scholar
  30. William, N. H. 1983Floral fragrances as cues in animal behaviourJones, C. E.Little, R. J. eds. Handbook of Experimental Pollination BiologyAcademic PressNew York5072Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • A. Mena Granero
    • 1
  • F. J. Egea Gonzalez
    • 2
  • J. M. Guerra Sanz
    • 1
  • J. L. Martínez Vidal
    • 2
  1. 1.CIFA La Mojonera, I.F.A.P.A., Junta de AndalucíaAutovia del MediterráneoLa Mojonera, AlmeríaSpain
  2. 2.Department of Analytical ChemistryUniversity of AlmeríaAlmeríaSpain

Personalised recommendations