Advertisement

Journal of Chemical Ecology

, Volume 31, Issue 10, pp 2231–2242 | Cite as

Herbivores, Vascular Pathways, and Systemic Induction: Facts and Artifacts

  • Colin Orians
Article

Abstract

Over the past 10 years there has been tremendous growth in our understanding of molecular, chemical, and morphological induction of traits involved in the resistance of plants to herbivores. Although it is well established that the patterns of induction can be constrained by a plant's vascular architecture, studies often fail to account for these constraints. Failure to do so has the potential to severely underestimate both the patterns and extent of induction. Here I review (1) the evidence for vascular control of induced responses, (2) how interspecific variation in phyllotaxy influences spatial patterning of induction, (3) the factors, phloem transport and volatile production, that may break down vascular constraints and lead to more widespread induction, and (4) the experimental approaches that could be compromised when vascular architecture is not considered. I show that vascular constraints in systemic induction are commonplace, but vary among species. I suggest that when induction is more widespread than expected from patterns of phyllotaxy, differences in vascular connectivity and volatile production may be responsible. I argue that advances in the mechanisms of systemic induction, cross-talk between different signal transduction pathways, specificity of induction, costs and benefits of systemic induction, and the effects of induced changes on herbivores and their natural enemies require that experiments be designed to examine and/or control for vascular constraints in systemic induction.

Key Words

Systemic induction vascular architecture sectoriality long-distance transport source–sink dynamics volatiles experimental design 

Notes

Acknowledgments

I thank Danush Viswanathan, Anurag Agrawal, Michael Thorpe, and two anonymous reviewers for comments on an early version of this manuscript and the National Science Foundation (DEB 9981568) and the Andrew Mellon Foundation for financial support.

References

  1. Agrawal, A. A. 2000Specificity of induced resistance in wild radish: causes and consequences for two specialist and two generalist caterpillarsOikos89493500CrossRefGoogle Scholar
  2. Agrawal, A. A., Karban, R. 1999Why induced defenses may be favored over constitutive strategies in plantsTollrian, R.Harvell, C. D. eds. The Ecology and Evolution of Inducible DefensesPrinceton University PressPrinceton4561Google Scholar
  3. Agrawal, A. A., Gorski, P. M., Tallamy, D. W. 1999Polymorphism in plant defense against herbivory: Constitutive and induced resistance in Cucumis sativusJ. Chem. Ecol.2522852304CrossRefGoogle Scholar
  4. Arnold, T. M., Schultz, J. C. 2002Induced sink strength as a prerequisite for induced tannin biosynthesis in developing leaves of PopulusOecologia130585593CrossRefGoogle Scholar
  5. Arnold, T. M., Appel, H., Patel, V., Stocum, E., Kavalier, A., Schultz, J. 2004Carbohydrate translocation determines the phenolic content of Populus foliage: a test of the sink–source model of plant defenseNew Phytol.164157164CrossRefGoogle Scholar
  6. Baldwin, I. T. 1988The alkaloidal responses of wild tobacco to real and simulated herbivoryOecologia77378381CrossRefGoogle Scholar
  7. Baldwin, I. T., Sims, C. L., Kean, S. E. 1990The reproductive consequences associated with inducible alkaloidal responses in wild tobaccoEcology71252262Google Scholar
  8. Baldwin, I. T., Gorham, D., Schmelz, E. A., Lewandowski, C. A., Lynds, G. Y. 1998Allocation of nitrogen to an inducible defense and seed production in Nicotiana attenuataOecologia115541552CrossRefGoogle Scholar
  9. Cipollini, D. 2002Does competition magnify the fitness costs of induced responses in Arabidopsis thaliana? A manipulative approachOecologia131514520CrossRefGoogle Scholar
  10. Cipollini, D. F., Redman, A. M. 1999Age-dependent effects of jasmonic acid treatment and wind exposure on foliar oxidase activity and insect resistance in tomatoJ. Chem. Ecol.25271281CrossRefGoogle Scholar
  11. Constabel, C. P., Yip, L., Patton, J. J., Christopher, M. E. 2000Polyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivoryPlant Physiol.124285295CrossRefPubMedGoogle Scholar
  12. Davis, M. A., Gordon, M. P., Smit, B. A. 1991Assimilate movement dictates remote sites ofwound-induced gene expression in poplar leavesProc. Natl. Acad. Sci. USA8823932396PubMedGoogle Scholar
  13. Moraes, C. M., Mescher, M. C., Tumlinson, J. H. 2001Caterpillar-induced nocturnal plant volatiles repel conspecific femalesNature419531577Google Scholar
  14. Denno, R. F.McClure, M. S. eds. 1983Variable Plants and Herbivores in Natural and Managed SystemsAcademic PressNew YorkGoogle Scholar
  15. Dicke, M., Agrawal, A. A., Bruin, J. 2003Plants talk, but are they deaf?Trends Plant Sci.8403405CrossRefPubMedGoogle Scholar
  16. Dickson, R. 1991Carbon fixation and distribution in young Populus treesRaghavendra, A. S. eds. Physiology of TreesJohn Wiley and Sons, Inc.New York5185Google Scholar
  17. Dickson, R. E., Isebrands, J. G. 1991Leaves as regulators of stress responseMooney, H. A.Winner, W. E.Pell, E. J. eds. Response of Plants to Multiple StressesAcademic Press Inc.San Diego334Google Scholar
  18. Farmer, E. E. 2001Surface-to-air signalsNature411854856Google Scholar
  19. Fisher, D. B. 2000Long-distance transportBuchanan, B. B.Gruissem, W.Jones, R. L. eds. Biochemistry and Molecular Biology of PlantsAmerican Society of Plant PhysiologistsRockville, MD730784Google Scholar
  20. Haukioja, E. 1990Induction of defenses in treesAnnu. Rev. Entomol.362542CrossRefGoogle Scholar
  21. Heil, M., Baldwin, I. T. 2002Fitness costs of induced resistance: Emerging experimental support for a slippery conceptTrends Plant Sci.76167CrossRefPubMedGoogle Scholar
  22. Ishiwatari, Y., Fujiwara, T., McFarland, K. C., Nemoto, K., Hayashi, H., Chino, M., Lucas, W. J. 1998Rice phloem thioredoxin h has the capacity to mediate its own cell-to cell transport through plasmodesmataPlanta2051222CrossRefPubMedGoogle Scholar
  23. Jones, C. G., Hopper, R. F., Coleman, J. S., Krischik, V. A. 1993Control of systematically induced herbivore resistance by plant vascular architectureOecologia93452456CrossRefGoogle Scholar
  24. Karban, R. 1986Induced resistance against spider mites in cotton: Field verificationEntomol. Exp. Appl.42239242CrossRefGoogle Scholar
  25. Karban, R. 1987Environmental conditions affecting the strength of induced resistance against mites in cottonOecologia73414419CrossRefGoogle Scholar
  26. Karban, R., Baldwin, I. T. 1997Induced Responses to HerbivoryUniversity of Chicago PressChicagoGoogle Scholar
  27. Karban, R., Myers, J. H. 1989Induced plant responses to herbivoryAnnu. Rev. Ecol. Syst.20331348CrossRefGoogle Scholar
  28. Karban, R., Baldwin, I. T., Baxter, K. J., Laue, G., Felton, G. W. 1997Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrushOecologia1256671Google Scholar
  29. Kessler, A., Baldwin, I. T. 2001Defensive function of herbivore-induced plant volatile emissions in natureScience29121412144CrossRefPubMedGoogle Scholar
  30. Kiefer, I. W., Slusarenko, A. J. 2003The pattern if systemic acquired resistance induction within the Arabidopsis rosette in relation to the pattern of translocationPlant Physiol.132840847CrossRefPubMedGoogle Scholar
  31. Larson, P. R. 1977Phyllotactic transitions in the vascular system of Populus deltoides Bartr. as determined by 14C labelingPlanta134241249CrossRefGoogle Scholar
  32. Lerdau, M. 2002Plants talk—but can they listen?Science298361CrossRefGoogle Scholar
  33. Lucas, W. J. 1997Application of microinjection techniques to plant nutritionPlant Soil196175189CrossRefGoogle Scholar
  34. Malone, M., Alarcon, J.-J. 1995Only xylem-borne factors can account for systemic wound signaling in the tomato plantPlanta196740746CrossRefGoogle Scholar
  35. Marshall, C. 1996Sectoriality and physiological organisation in herbaceous plants: an overviewVegetatio127916CrossRefGoogle Scholar
  36. Minchin, P. E. H., Thorpe, M. R. 1984Apoplastic phloem unloading in the stem of bean Phaseolis-vulgarisJ. Exp. Bot.35538550Google Scholar
  37. Minchin, P. E. H., Thorpe, M. R. 1987Measurement of unloading and reloading of photo-assimilate within the stem of beanJ. Exp. Bot.38211220Google Scholar
  38. Moore, R., Clark, W. D., and Vodopich, D. S. 1998. pp. 314–315, in Botany, 2nd edn. WCB/McGraw-Hill, Dubuque, IA.Google Scholar
  39. Moran, P. J., Thompson, G. A. 2001Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathwaysPlant Physiol.12510741085CrossRefPubMedGoogle Scholar
  40. Murray, B. J., Mauk, C., NoodÉn, L. D. 1982Restricted vascular pipelines (and orthostichies) in plantsWhat's New Plant Physiol.133336Google Scholar
  41. Mutikainen, P., Walls, M., Ovaska, J. 1996Herbivore-induced resistance in Betula pendula: the role of plant vascular architectureOecologia108723727CrossRefGoogle Scholar
  42. Orians, C. M., Jones, C. G. 2001Plants as resource mosaics: a functional model for predicting patterns of within-plant resource heterogeneity to consumers based on vascular architecture and local environmental variabilityOikos94493504CrossRefGoogle Scholar
  43. Orians, C. M., Pomerleau, J., Ricco, R. 2000Vascular architecture generates fine scale variation in the systemic induction of proteinase inhibitors in tomatoJ. Chem. Ecol.26471485CrossRefGoogle Scholar
  44. Orians, C. M., Babst, B., Zanne, A. E. 2005Vascular constraints and long-distance transport in dicotsHolbrook, N. M.Zwieniecki, M. eds. Vascular Transport in PlantsElsevier/AP co-imprintOxfordGoogle Scholar
  45. Pate, J. S., Dieter Jeschke, W. 1995Role of stems in transport, storage, and circulation of ions and metabolites by the whole plantGartner, B. L. eds. Plant Stems: Physiology and Functional MorphologyAcademic PressSan Diego177204Google Scholar
  46. Preston, K. A. 1998The effects of developmental stage and source leaf position on integration and sectorial patterns of carbohydrate movement in an annual plant, Perilla frutescens (Lamiaceae)Am. J. Bot.8516951703Google Scholar
  47. Redman, A. M., Cipollini, D., Schultz, J. C. 2001Fitness costs of jasmonic acid-induced defense in tomato, Lycopersicon esculentumOecologia126380385CrossRefGoogle Scholar
  48. Rhodes, J. D., Thain, J. F., Wildon, D. C. 1999Evidence for physically distinct systemic signaling pathways in the wounded tomato plantAnn. Bot.84109116CrossRefGoogle Scholar
  49. Ruiz-Medrano, R., Xoconostle-Cazares, B., Lucas, W. J. 1999Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plantsDevelopment12644054419PubMedGoogle Scholar
  50. Ruiz-Medrano, R., Xoconostle-Cazares, B., Kragler, F. 2004The plasmodesmatal transport pathway for homeotic proteins, silencing signals and virusesCurr. Opin. Plant Biol.7641650CrossRefPubMedGoogle Scholar
  51. Sachs, T., Novoplansky, A., Cohen, D. 1993Plants as competing population of redundant organsPlant Cell Environ.16765770Google Scholar
  52. Schittko, U., Baldwin, I. T. 2003Constraints to herbivore-induced systemic responses: bidirectional signaling along orthostichies in Nicotiana attenuataJ. Chem. Ecol.29763770CrossRefPubMedGoogle Scholar
  53. Schittko, U., Preston, C. A., Baldwin, I. T. 2000Eating the evidence? Manduca sexta larvae cannot disrupt specific jasmonate induction in Nicotiana attenuata by rapid consumptionPlanta21343346Google Scholar
  54. Shea, M. M., Watson, M. A. 1989Patterns of leaf and flower removal: their effect on fruit growth in Chamaenerion angustifolium (fireweed)Am. J. Bot.76884890Google Scholar
  55. Shulaev, V., Leon, J., Raskin, I. 1995Is salicylic acid a translocated signal of systemic acquired resistance in tobacco?Plant Cell716911701CrossRefPubMedGoogle Scholar
  56. Stout, M. J., Workman, K. V., Duffey, S. S. 1996aIdentity, spatial distribution, andvariability of induced chemical responses in tomato plantsEntomol. Exp. Appl.79255271CrossRefGoogle Scholar
  57. Stout, M. J., Workman, K. V., Workman, J. S., Duffey, S. S. 1996bTemporal and ontogenetic aspects of protein induction in foliage of the tomato, Lycopersicon esculentumBiochem. Syst. Ecol.24116CrossRefGoogle Scholar
  58. StratmaNn, J. W. 2003Long-distance run in the wound response—jasmonic acid is pulling aheadTrends Plant Sci.8247250CrossRefPubMedGoogle Scholar
  59. Thaler, J. S. 1999Induced resistance in agricultural crops: Effects of jasmonic acid on herbivory and yield in tomato plantsEnviron. Entomol.283037Google Scholar
  60. Thaler, J. S. 1999Jasmonate-inducible plant defences cause increased parasitism of herbivoresNature399686688CrossRefGoogle Scholar
  61. Thaler, J. S., Fidantsef, A. L., Duffey, S. S., Bostock, R. M. 1999Trade-offs in plant defense against pathogens and herbivores: A field demonstration of chemical elicitors of induced resistanceJ. Chem. Ecol.2515971609CrossRefGoogle Scholar
  62. Thaler, J. S., Karban, R., Ullman, D. E., Boege, K., Bostock, R. M. 2002Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasitesOecologia131235277Google Scholar
  63. Thomma, B. P. H. J., Eggermont, K., Penninckx, I. A. M. A., Mauch-Mani, B., Vogelsang, R., Cammue, B. P. A., Broekaert, W. F. 1998Separate jasmonate-dependent and salicylate-dependent defense–response pathways in Arabidopsis are essential for resistance to distinct microbial pathogensProc. Natl. Acad. Sci. USA951510715111CrossRefPubMedGoogle Scholar
  64. Thorpe, M., Minchin, P., Gould, N., McQueen, J. 2005The stem apoplast: A potential communication channel in plant growth regulationHolbrook, N. M.Zwieniecki, M. eds. Vascular Transport in PlantsElsevier/AP co-imprintOxfordGoogle Scholar
  65. Traw, M. B., Dawson, T. E. 2002Differential induction of trichomes by three herbivores of black mustardOecologia131526532CrossRefGoogle Scholar
  66. Bel, A. J. E., Ehlers, K., Knoblauch, M. 2002Sieve elements caught in the actTrends Plant Sci.7126132CrossRefPubMedGoogle Scholar
  67. Bel, A. J. E. 2003Transport phloem: Low profile, high impactPlant Physiol.13115091510PubMedGoogle Scholar
  68. Dam, N. M., Horn, M., Mares, M., Baldwin, I. T. 2001Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuataJ. Chem. Ecol.27547568CrossRefPubMedGoogle Scholar
  69. Poecke, R., Posthumus, M. P., Dicke, M. A. 2001Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rebucula: chemical, behavioral, and gene-expression analysisJ. Chem. Ecol.2719111928CrossRefPubMedGoogle Scholar
  70. Viswanathan, D. V., Thaler, J. S. 2004Plant vascular architecture and within-plant spatial patterns in resource quality following herbivoryJ. Chem. Ecol.30531543CrossRefPubMedGoogle Scholar
  71. Voelckel, C., Baldwin, I. T. 2004Generalist and specialist lepidopteran larvae elicit different transcriptional responses in Nicotiana attenuata, which correlate with larval FAC profilesEcol. Lett.770775CrossRefGoogle Scholar
  72. Walling, L. L. 2000The myriad plant responses to herbivoresJ. Plant Growth Regul.19195216PubMedGoogle Scholar
  73. Watson, M. A. 1986Integrated physiological units in plantsTREE1119123Google Scholar
  74. Watson, M. A., Casper, B. B. 1984Morphogenetic constraints on patterns of carbon distribution in plantsAnnu. Rev. Ecol. Syst.15233258CrossRefGoogle Scholar
  75. Zavala, J. A., Baldwin, I. T. 2004Fitness benefits of trypsin proteinase inhibitor expression in Nicotiana attenuata are greater than their costs when plants are attackedBMC Ecol.4115CrossRefPubMedGoogle Scholar
  76. Zavala, J. A., Patankar, A., Gase, K., Baldwin, I. T. 2004Constitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs in Nicotiana attenuataProc. Natl. Acad. Sci. USA10116071612CrossRefPubMedGoogle Scholar
  77. Zhang, Z. P., Baldwin, I. T. 1997Transport of [2-C-14]jasmonic acid from leaves to roots mimics wound-induced changes in endogenous jasmonic acid pools in Nicotiana sylvestrisPlanta203436441CrossRefGoogle Scholar
  78. Zwieniecki, M. A., Orians, C. M., Melcher, P. J., Holbrook, N. M. 2003Ionic control of lateral exchange of water between vascular bundles in tomatoJ. Exp. Bot.5413991406CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of BiologyTufts UniversityMedfordUSA

Personalised recommendations