Journal of Chemical Ecology

, Volume 31, Issue 9, pp 2091–2109

The Effects of Ants on the Entomophagous Butterfly Caterpillar Feniseca tarquinius, and the Putative Role of Chemical Camouflage in the Feniseca–Ant Interaction



Butterfly caterpillars in the lycaenid subfamily Miletinae are predators of ant-tended Homoptera, yet they lack specialized secretory and call-production organs crucial to ant association in other lycaenids. Here, we address the question of how miletine caterpillars have invaded the ant–Homoptera symbiosis through a study of the only New World miletine, Feniseca tarquinius, a predator of the wooly aphid Prociphilus tesselatus. Previous interpretations have suggested that F. tarquinius and other miletine caterpillars avoid ant aggression by concealing themselves under silken webs. In contrast, our field data indicate that F. tarquinius caterpillars are less likely to be concealed in the presence of the ants Camponotus pennsylvanicus and Formica obscuriventris than in the absence of ants, although caterpillar and ant behaviors vary between years. Chemical analysis and behavioral assays suggest that chemical camouflage, not physical concealment, is responsible for the ants’ failure to detect and remove F. tarquinius caterpillars from aphid colonies. Analyses by gas chromatography indicate that the cuticular lipid composition of caterpillars are similar to that of their aphid prey, although it varies with prey species. Behavioral assays confirm that solvent extracts of F. tarquinius caterpillars and P. tesselatus aphids evoke similar behavioral responses in C. pennsylvanicus ants. Chemical camouflage is well known in social parasites of ants, but the present study represents one of a few documented cases where chemical deceit is important to interactions with ants outside the nest.

Key Words

Lycaenidae Miletinae Feniseca tarquinius chemical camouflage cuticular hydrocarbons lycaenid–ant interactions carnivorous caterpillars Camponotus pennsylvanicus Eriosomatidae Prociphilus tesselatus 


  1. Akino, T., Mochizuki, R., Morimoto, M., Yamaoka, R. 1996Chemical camouflage of myrmecophilous cricket Myrmecophilus sp. to be integrated with several ant speciesJpn. J. Appl. Entomol. Zool.403946Google Scholar
  2. Akino, T., Knapp, J. J., Thomas, J. A., Elmes, G. W. 1999Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant coloniesProc. R. Soc. Lond., B Biol.26614191426Google Scholar
  3. Allan, R. A., Capon, R. J., Brown, W. V., Elgar, M. A. 2002Mimicry of host cuticular hydrocarbons by salticid spider Cosmophasis bitaeniata that preys on larvae of tree ants Oecophylla smaragdinaJ. Chem. Ecol.28835845CrossRefPubMedGoogle Scholar
  4. Atstatt, P. R. 1981Lycaenid butterflies and ants: Selection for enemy-free spaceAm. Nat.118638654CrossRefGoogle Scholar
  5. Clark, A. H. 1926. Carnivorous butterflies. Annual Report of the Board of Regents of the Smithsonian Institution, 1925, pp 439–508.Google Scholar
  6. Clarke, K. R. 1993Non-parametric multivariate analyses of changes in community structureAust. J. Ecol.18117143Google Scholar
  7. Cottrell, C. B. 1984Aphytophagy in butterflies: Its relationship to myrmecophilyZool. J. Linn. Soc. Lond.79157Google Scholar
  8. Creighton, W. S. 1950The ants of North AmericaBull. Mus. Comp. Zool.104158557 plsGoogle Scholar
  9. Cushman, J. H., Rashbrook, V. K., Beattie, A. J. 1994Assessing benefits to both participants in a lycaenid–ant associationEcology7510311041Google Scholar
  10. Dettner, K., Liepert, C. 1994Chemical mimicry and camouflageAnnu. Rev. Entomol.39129154CrossRefGoogle Scholar
  11. DeVries, P. J. 1988The larval ant-organs of Thisbe irenea (Riodinidae) and their effects on attending antsZool. J. Linn. Soc. Lond.94379393Google Scholar
  12. DeVries, P. J. 1990Enhancement of symbioses between butterfly caterpillars and ants by vibrational communicationScience24811041106Google Scholar
  13. DeVries, P. J. 1997The Butterflies of Costa Rica and Their Natural History, II: RiodinidaePrinceton University PressNew Jersey288 ppGoogle Scholar
  14. DeVries, P. J. 2001ButterfliesEncycl. Biodivers.1559573CrossRefGoogle Scholar
  15. DeVries, P. J., Baker, I. 1989Butterfly exploitation of an ant–plant mutualism: adding insult to herbivoryJ. N. Y. Entomol. Soc.97332340Google Scholar
  16. Edwards, W. H. 1886On the history and the preparatory stages of Feniseca tarquiniusCan. Entomol.18141153Google Scholar
  17. Eisner, T., Hicks, K., Eisner, M. 1978“Wolf-in-sheep’s clothing” strategy of a predaceous insect larvaScience199790794Google Scholar
  18. Elmes, G. W., Akino, T., Thomas, J. A., Clarke, R. T., Knapp, J. J. 2002Interspecific differences in cuticular hydrocarbon profiles of Myrmica ants are sufficiently consistent to explain host specificity by Maculinea (large blue) butterfliesOecologia130525535CrossRefGoogle Scholar
  19. Holldobler, B. E., Wilson, E. O. 1990The AntsBelknap PressCambridge, MA732 pGoogle Scholar
  20. Howard, R. W., Akre, R. D., Garnett, W. B. 1990Chemical mimicry in an obligate predator of carpenter ants (Hymenoptera: Formicidae)Ann. Entomol. Soc. Am.83607616Google Scholar
  21. Huxley, C. R.Cutler, D. F. eds. 1991Ant–Plant InteractionsOxford University PressNew York, NY601 ppGoogle Scholar
  22. Kitching, R. L. 1987Aspects of the natural history of the lycaenid butterfly Allotinus major in SulawesiJ. Nat. Hist.21535544Google Scholar
  23. Lahav, S., Soroker, V., Hefetz, A. 1999Direct behavioral evidence for hydrocarbons as ant recognition discriminatorsNaturwissenschaften86246249CrossRefGoogle Scholar
  24. Liang, D., Silverman, J. 2000“You are what you eat”: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humileNaturwissenschaften87412416CrossRefPubMedGoogle Scholar
  25. Liepert, C., Dettner, K. 1993Recognition of aphid parasitoids by honeydew-collecting ants: the role of cuticular lipids in a chemical mimicry systemJ. Chem. Ecol.1921432153CrossRefGoogle Scholar
  26. Liepert, C., Dettner, K. 1996Role of cuticular hydrocarbons of aphid parasitoids in their relationship to aphid-attending antsJ. Chem. Ecol.22695707CrossRefGoogle Scholar
  27. Malicky, H. 1970New aspects on the association between lycaenid larvae (Lycaenidae) and ants (Formicidae, Hymenoptera)J. Lepid. Soc.24190202Google Scholar
  28. Maschwitz, U., Nassig, W. A., Dumpert, K., Fiedler, K. 1988Larval carnivory and myrmecoxeny, and imaginal myrmecophily in miletine Lycaenids (Lepidoptera, Lycaenidae) on the Malay PeninsulaTyo to Ga39167181Google Scholar
  29. Pierce, N. E. 1995Predatory and parasitic lepidoptera: carnivores living on plantsJ. Lepid. Soc.49412453Google Scholar
  30. Pierce, N. E., Braby, M. F., Heath, A., Lohman, D. J., Mathew, J., Rand, D. A., Travassos, M. A. 2002The ecology and evolution of ant association in the Lycaenidae (Lepidoptera)Annu. Rev. Entomol.47733771CrossRefPubMedGoogle Scholar
  31. Scudder, S. H., 1889. The Butterflies of the Eastern United States and Canada with Special Reference to New England. Vol. 1–3, 24+ 1958 p, 88 pls.Google Scholar
  32. Singer, T. L. 1998Roles of hydrocarbons in recognition systems of insectsAm. Zool.38394405Google Scholar
  33. Sokal, R. R., Rohlf, F. J. 1981BiometryW.H. FreemanSan Francisco, CA859 pGoogle Scholar
  34. Meer, R. K., Wojcik, D. P. 1982Chemical mimicry in the myrmecophilous beetle Myrmecaphodius excavaticollisScience218807808Google Scholar
  35. Way, M. J. 1963Mutualism between ants and honeydew-producing homopteraAnnu. Rev. Entomol.8307337CrossRefGoogle Scholar
  36. Zar, J. H. 1999Biostatistical AnalysisPearson EducationUpper Saddle River, NJ663 pGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Department of Biological SciencesUniversity of New OrleansNew OrleansUSA
  3. 3.Department of EntomologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations