Journal of Chemical Ecology

, Volume 31, Issue 9, pp 2003–2018 | Cite as

The Role of Fresh versus Old Leaf Damage in the Attraction of Parasitic Wasps to Herbivore-Induced Maize Volatiles

Article

Abstract

The odor produced by a plant under herbivore attack is often used by parasitic wasps to locate hosts. Any type of surface damage commonly causes plant leaves to release so-called green leaf volatiles, whereas blends of inducible compounds are more specific for herbivore attack and can vary considerably among plant genotypes. We compared the responses of naïve and experienced parasitoids of the species Cotesia marginiventris and Microplitis rufiventris to volatiles from maize leaves with fresh damage (mainly green leaf volatiles) vs. old damage (mainly terpenoids) in a six-arm olfactometer. These braconid wasps are both solitary endoparasitoids of lepidopteran larvae, but differ in geographical origin and host range. In choice experiments with odor blends from maize plants with fresh damage vs. blends from plants with old damage, inexperienced C. marginiventris showed a preference for the volatiles from freshly damaged leaves. No such preference was observed for inexperienced M. rufiventris. After an oviposition experience in hosts feeding on maize plants, C. marginiventris females were more attracted by a mixture of volatiles from fresh and old damage. Apparently, C. marginiventris has an innate preference for the odor of freshly damaged leaves, and this preference shifts in favor of a blend containing a mixture of green leaf volatiles plus terpenoids, after experiencing the latter blend in association with hosts. M. rufiventris responded poorly after experience and preferred fresh damage odors. Possibly, after associative learning, this species uses cues that are more directly related with the host presence, such as volatiles from host feces, which were not present in the odor sources offered in the olfactometer. The results demonstrate the complexity of the use of plant volatiles by parasitoids and show that different parasitoid species have evolved different strategies to exploit these signals.

Key Words

Cotesia marginiventris Microplitis rufiventris Spodoptera littoralis Zea mays parasitoid innate preference associative learning induced volatiles green leaf volatiles terpenoids host location 

Notes

Acknowledgments

We thank Liselore Roelfstra and Yves Borcard for parasitoid rearing. Parasitoids with which we started our lab colonies were supplied by Donald Nordlund (C. marginiventris) and Esmat Hegazi (M. rufiventris). We also thank Syngenta (Stein, Switzerland) for the weekly shipment of Spodoptera littoralis eggs and caterpillars. Alex Aebi, Louis Felix Bersier, Marco D’Alessandro, Thomas Degen, Martine Rahier, and Cristina Tamò contributed with stimulating discussions and/or comments on the initial manuscript. We are grateful to Matthias Held, Ingrid Ricard, and Anthony Davison for the log-linear model construction and help with statistical analyses. This study was supported by grants from the Swiss Centre of International Agriculture (ZIL, ETH Zurich) and the Swiss National Science Foundation (grants 31-46237-95 and 31-44459-95).

References

  1. Agelopoulos, N. G., Keller, M. A. 1994Plant–natural enemy association in the tritrophic system, Cotesia rubecula–Pieris rapae–Brassicaceae (Cruciferae): I. Sources of infochemicalsJ. Chem. Ecol.2017251734CrossRefGoogle Scholar
  2. Baehrecke, E. H., Williams, H. J., Vinson, S. B. 1989Electroantennogram responses of Campoletis sonorensis (Hymenoptera: Ichneumonidae) to chemicals in cotton (Gossypium hirsutum L.)J. Chem. Ecol.153745CrossRefGoogle Scholar
  3. Bogahawatte, C. N. L., Emden, H. F. 1996The influence of the host plant of diamond-back moth (Plutella xylostella) on the plant preferences of its parasitoid Cotesia plutellae in Sri LankaPhysiol. Entomol.219396Google Scholar
  4. Cortesero, A. M., Moraes, C. M., Stapel, J. O., Tumlinson, J. H., Lewis, W. J. 1997Comparisons and contrasts in host-foraging strategies of two larval parasitoids with different degrees of specificityJ. Chem. Ecol.2315891606CrossRefGoogle Scholar
  5. Moraes, C., Lewis, W. J. 1999Analyses of two parasitoids with convergent foraging strategiesJ. Insect. Behav.12571583CrossRefGoogle Scholar
  6. Moraes, C. M., Lewis, W. J., Paré, P. W., Alborn, H. T., Tumlinson, J. H. 1998Herbivore-infested plants selectively attract parasitoidsNature393570573CrossRefGoogle Scholar
  7. Dicke, M. 1999Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods?Entomol. Exp. Appl.91131142CrossRefGoogle Scholar
  8. Douloumpaka, S., Emden, H. F. 2003A maternal influence on the conditioning to plant cues of Aphidius colemani Viereck, parasitizing the aphid Myzus persicae SulzerPhysiol. Entomol.28108113CrossRefGoogle Scholar
  9. Drost, Y. C., Lewis, W. J., Tumlinson, J. H. 1988Beneficial arthropod behavior mediated by airborne semiochemicals: V. Influence of rearing method, host plant, and adult experience on host-searching behavior of Microplitis croceipes (Cresson), a larval parasitoid of HeliothisJ. Chem. Ecol.1416071616CrossRefGoogle Scholar
  10. Du, Y., Poppy, G. M., Powell, W., Pickett, J. A., Wadhams, L. J., Woodcock, C. M. 1998Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius erviJ. Chem. Ecol.2413551368CrossRefGoogle Scholar
  11. Fritzsche Hoballah, M. E., Turlings, T. C. J. 2001Experimental evidence that plants under caterpillar attack may benefit from attracting parasitoidsEvol. Ecol. Res.3113Google Scholar
  12. Fukushima, J., Kainoh, Y., Honda, H., Takabayashi, J. 2002Learning of herbivore-induced and nonspecific plant volatiles by a parasitoid, Cotesia kariyaiJ. Chem. Ecol.28579586CrossRefPubMedGoogle Scholar
  13. Geervliet, B. F., Vet, L. E. M., Dicke, M. 1994Volatiles from damaged plants as major cues in long-range host-searching by the specialist parasitoid Cotesia rubeculaEntomol. Exp. Appl.73289297Google Scholar
  14. Geervliet, J. B. F., Vet, L. E. M., Dicke, M. 1996Innate response of the parasitoids Cotesia glomerata and C. rubecola (Hymenoptera: Braconidae) to volatiles from different plant–herbivore complexesJ. Insect Behav.9525538Google Scholar
  15. Geervliet, J. B. F., Posthumus, M. A., Vet, L. E. M., Dicke, M. 1997Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris speciesJ. Chem. Ecol.2329352954Google Scholar
  16. Gouinguené, S., Turlings, T. C. G. 2003Induction of volatile emissions in maize by different larval instars of Spodoptera littoralisJ. Chem. Ecol.29145162CrossRefPubMedGoogle Scholar
  17. Gouinguené, S., Pickett, J., Wadhams, L. G., Birkett, M. A., and Turlings, T. C. G. 2005. Antennal electrophysiological responses of three parasitic wasps to the caterpillar induced volatiles from maize, cowpea and cotton. J. Chem. Ecol. in press.Google Scholar
  18. Heath, R. R., Manukian, A. 1992Development and evaluation of systems to collect volatile semiochemicals from insects and plants using a charcoal-infused medium for air purificationJ. Chem. Ecol.1812091226CrossRefGoogle Scholar
  19. Hegazi, E. M., El-Minshawy, A. M. 1979Laboratory technique for mass-rearing Microplitis rufiventris Kok. (Braconidae; Hymenoptera), an internal parasite of the cotton leaf-worm Spodoptera littoralis (Boisd.) (Noctuidae; Lepidoptera)Boll. Lab. Entmol. Agrar. Filippo Silvestri36205210Google Scholar
  20. Hérard, F., Keller, M. A., Lewis, W. J., Tumlinson, J. H. 1988Beneficial arthropod behavior mediated by airborne semiochemicals: III. Influence of age and experience on flight chamber responses of Microplitis demolitor WilkinsonJ. Chem. Ecol.1415831596CrossRefGoogle Scholar
  21. Hoballah Fritzsche, M. E., Tamò, C., Turlings, T. C. J. 2002Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid Cotesia marginiventris: is quality or quantity important?J. Chem. Ecol.28951968CrossRefPubMedGoogle Scholar
  22. Lewis, W. J., Tumlinson, J. H. 1988Host detection by chemically mediated associative learning in a parasitic waspNature331257259CrossRefGoogle Scholar
  23. Li, Y., Dickens, J. C., Steiner, W. W. M. 1992Antennal olfactory responsiveness of Microplitis croceipes (Hymenoptera: Braconidae) to cotton plant volatilesJ. Chem. Ecol.1817611773Google Scholar
  24. Maes, G. M. 1989Catalogo de los insectos controladores biologicos en Nicaragua. Volumen III. Insectos parasitoidesRev. Nicar. Entomol.101138Google Scholar
  25. Mattiacci, L., Dicke, M., Posthamus, M. A. 1994Induction of parasitoid attracting synomone in brussels sprouts plants by feeding of Pieris brassicae larvae: role of mechanical damage and herbivore elicitorJ. Chem. Ecol.2022292247CrossRefGoogle Scholar
  26. McAuslane, H. J., Vinson, S. B., Williams, H. J. 1991Influence of adult experience on host microhabitat location by the generalist parasitoid, Campoletis sonorensis (Hymenoptera: Ichneumonidae)J. Insect Behav.4101113CrossRefGoogle Scholar
  27. McCall, P. J., Turlings, T. C. J., Lewis, W. J., Tumlinson, J. H. 1993Role of plant volatiles in host location by the specialist parasitoid Microplitis croceipes Cresson (Braconidae: Hymenoptera)J. Insect Behav.6625639CrossRefGoogle Scholar
  28. Ngi-Song, A. J., Overholt, W. A., Njagi, P. G. N., Dicke, M., Ayertey, J. N., Lwande, W. 1996Volatile infochemicals used in host and host habitat location by Cotesia flavipes Cameron and Cotesia sesamiae (Cameron) (Hymenoptera: Braconidae), larval parasitoids of stemborers on graminaeJ. Chem. Ecol.22307323CrossRefGoogle Scholar
  29. Powell, W., Pennacchio, F., Poppy, G. M., Tremblay, E. 1998Strategies involved in the location of hosts by the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae)Biol. Control11104112CrossRefGoogle Scholar
  30. Reddy, G. V. P., Holopainen, J. K., Guerrero, A. 2002Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval frass, and green leaf cabbage volatilesJ. Chem. Ecol.28131143CrossRefPubMedGoogle Scholar
  31. Röse, U. S. R., Lewis, W. J., Tumlinson, J. H. 1998Specificity of systematically released cotton volatiles as attractants for specialist and generalist parasitic waspJ. Chem. Ecol.24303319CrossRefGoogle Scholar
  32. Steinberg, S., Dicke, M., Vet, L. E. M. 1993Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoid Cotesia glomerataJ. Chem. Ecol.194759Google Scholar
  33. Takabayashi, J., Takahashi, S., Dicke, M., Posthumus, M. A. 1995Developmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plantsJ. Chem. Ecol.21273287CrossRefGoogle Scholar
  34. Turlings, T. C. J., Tumlinson, J. H., Lewis, W. J., Vet, L. E. M. 1989Beneficial arthropod behavior mediated by airborne semiochemicals: VIII. Learning of host-related odours induced by a brief contact experience with host by-products in Cotesia marginiventris (Cresson), a generalist larval parasitoidJ. Insect Behav.2217226CrossRefGoogle Scholar
  35. Turlings, T. C. J., Tumlinson, J. H., Lewis, W. J. 1990Exploitation of herbivore-induced plant odours by host-seeking parasitic waspsScience25012511253Google Scholar
  36. Turlings, T. C. J., Wäckers, F. L., Vet, L. E. M., Lewis, W. J., Tumlinson, J. H.,  et al. 1993

    Learning of host-finding cues by hymenopterous parasitoids

    Papaj, D. R. eds. Insect Learning Ecological and Evolutionary PerspectivesChapman & HallNew York5178
    Google Scholar
  37. Turlings, T. C. J., Lengwiler, U. B., Bernasconi, M. L., Wechsler, D. 1998Timing of induced volatile emissions in maize seedlingsPlanta207146152CrossRefGoogle Scholar
  38. Turlings, T. C. J., Davison, A., Tamò, C. 2004A six-arm olfactometer permitting simultaneous observation of insect attraction and odour trappingPhysiol. Entomol.294555CrossRefGoogle Scholar
  39. Poecke, R. M. P., Dicke, M. 2002Induced parasitoid attraction by Arabidopsis thaliana: involvement of the octadecanoid and the salicylic acid pathwayJ. Exp. Bot.5317931799CrossRefPubMedGoogle Scholar
  40. Poecke, R. M. P., Posthumus, M. A., Dicke, M. 2001Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysisJ. Chem. Ecol.27911928Google Scholar
  41. Vet, L. E. M., Dicke, M. 1992Ecology of infochemical use by natural enemies in a tritrophic contextAnnu. Rev. Entomol.37141172CrossRefGoogle Scholar
  42. Vet, L. E. M., Groenewold, A. W. 1990Semiochemicals and learning in parasitoidsJ. Chem. Ecol.1631193135CrossRefGoogle Scholar
  43. Vet, L. E. M., Lewis, W. J., Cardé, R. T. 1995

    Parasitoid foraging and learning

    Cardé, R. T.Bell, W. J. eds. Chemical Ecology of Insects 2Chapman & HallNew York65101
    Google Scholar
  44. Whitman, D. W., Eller, F. J. 1990Parasitic wasps orient to green leaf volatilesChemoecology16976CrossRefGoogle Scholar
  45. Wickremasinghe, M. G. V., Emden, H. F. 1992Reactions of adult female parasitoids, particularly Aphidius rhopalosiphi, to volatile chemical cues from the host plants of their aphid preyPhysiol. Entomol.17297304Google Scholar
  46. Zanen, P. O., Cardé, R. T. 1991Learning and the role of host-specific volatiles during in-flight host-finding in the specialist parasitoid Microplitis croceipesPhysiol. Entomol.16381389Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institute of Plant SciencesUniversity of BernBernSwitzerland
  2. 2.Laboratory of Animal Ecology and Entomology, Institute of ZoologyUniversity of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations