Journal of Chemical Ecology

, Volume 31, Issue 8, pp 1887–1905 | Cite as

Hydroxamic Acid Content and Toxicity of Rye at Selected Growth Stages

  • Clifford P. RiceEmail author
  • Yong Bong Park
  • Frédérick Adam
  • Aref A. Abdul-Baki
  • John R. Teasdale


Rye (Secale cereale L.) is an important cover crop that provides many benefits to cropping systems including weed and pest suppression resulting from allelopathic substances. Hydroxamic acids have been identified as allelopathic compounds in rye. This research was conducted to improve the methodology for quantifying hydroxamic acids and to determine the relationship between hydroxamic acid content and phytotoxicity of extracts of rye root and shoot tissue harvested at selected growth stages. Detection limits for an LC/MS-MS method for analysis of hydroxamic acids from crude aqueous extracts were better than have been reported previously. (2R)-2-β-d-Glucopyranosyloxy-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA-G), 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA), benzoxazolin-2(3H)-one (BOA), and the methoxy-substituted form of these compounds, (2R)-2-β-d-glucopyranosyloxy-4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA glucose), 2,4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA), and 6-methoxy-benzoxazolin-2(3H)-one (MBOA), were all detected in rye tissue. DIBOA and BOA were prevalent in shoot tissue, whereas the methoxy-substituted compounds, DIMBOA glucose and MBOA, were prevalent in root tissue. Total hydroxamic acid concentration in rye tissue generally declined with age. Aqueous crude extracts of rye shoot tissue were more toxic than extracts of root tissue to lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) root length. Extracts of rye seedlings (Feekes growth stage 2) were most phytotoxic, but there was no pattern to the phytotoxicity of extracts of rye sampled at growth stages 4 to 10.5.4, and no correlation of hydroxamic acid content and phytotoxicity (I50 values). Analysis of dose–response model slope coefficients indicated a lack of parallelism among models for rye extracts from different growth stages, suggesting that phytotoxicity may be attributed to compounds with different modes of action at different stages. Hydroxamic acids may account for the phytoxicity of extracts derived from rye at early growth stages, but other compounds are probably responsible in later growth stages.

Key Words

DIBOA glucose, (2R)-2-β-d-glucopyranosyloxy-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one DIBOA, 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one BOA, benzoxazolin-2(3H)-one DIMBOA glucose, (2R)-2-β-d-glucopyranosyloxy-4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one DIMBOA, 2,4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one MBOA, 6-methoxy-benzoxazolin-2(3H)-one. 



Dr. Park’s sabbatical at the USDA-ARS Sustainable Agricultural Systems Laboratory was supported by a grant from Cheju National University. We also acknowledge Jim Oliver, USDA-ARS – Chemicals Affecting Insect Behavior Lab (CAIBL), for his kind assistance to Frédérick Adam in synthesizing DIBOA and DIBOA-G; Jerry Klun, USDA-ARS-CAIBL, for providing DIMBOA-G and DIMBOA; and Peter Ewashkow for technical assistance conducting bioassays.


  1. Baker, E. A., Smith, I. M. 1977Antifungal compounds in winter wheat resistant and susceptible to Septoria nodorumAnn. Appl. Biol.876773Google Scholar
  2. Barnes, J. P., Putnam, A. R. 1986Evidence for allelopathy by residues and aqueous extracts of rye (Secale cereale)Weed Sci.34384390Google Scholar
  3. Barnes, J. P., Putnam, A. R., Burke, B. A., Aasen, A. J. 1987Isolation and characterization of allelochemicals in rye herbagePhytochemistry2613851390Google Scholar
  4. Bonnington, L., Eljarrat, E., Guillamón, M., Eichhorn, P., Taberner, A., Barceló, D. 2003aDevelopment of a liquid chromatography-electrospray-tandem mass spectrometry method for quantitative determination of benzoxazinone derivatives in plantsAnal. Chem.7531283136Google Scholar
  5. Bonnington, L. S., Barceló, D., Knepper, T. P. 2003bUtilisation of electrospray time-of-flight mass spectrometry for solving complex fragmentation patterns: Application to benzoxazinone derivativesJ. Mass Spectrom.3810541066Google Scholar
  6. Burgos, N. R., Talbert, R. E. 1994Weed control and sweet corn (Zea maiz var. rugosa) response in a no-till system with cover cropsWeed Sci.44355361Google Scholar
  7. Burgos, N. R., Talbert, R. E. 2000Differential activity of allelochemicals from Secale cereale in seedling bioassaysWeed Sci.48302310Google Scholar
  8. Burgos, N. R., Talbert, R. E., Mattice, J. D. 1999Cultivar and age differences in the production of allelochemicals by Secale cerealeWeed Sci.47481485Google Scholar
  9. Cambier, V., Hance, T., Hoffmann, E. D. 2000Variation of DIMBOA and related compounds content in relation to the age and plant organ in maizePhytochemistry53223229Google Scholar
  10. Chase, W. R., Nair, M. G., Putnam, A. R. 19912,2′-Oxo-1-1′-azobenzene: Selective toxicity of rye (Secale cereale L.) allelochemicals to weed and crop species: IIJ. Chem. Ecol.17919Google Scholar
  11. Gutierrez, C., Guerrero, A., Castañera, P., Torres, J. V. 1982A high-performance liquid chromatographic method for quantitation of DIMBOA and MBOA in maize plant extractJ. Agric. Food Chem.3012581260Google Scholar
  12. Hietala, P., Virtanen, A. 1960Precursors of benzoxazoninone in rye plants. II. Precursor I. The glucosideActa Chem. Scand.14502504Google Scholar
  13. Hofman, J., Hofmanová, O. 19691,4-Benzoxazine derivatives in plants: Sephadex fractionation and identification of a new glucosideEur. J. Biochem.8109112Google Scholar
  14. Hoffman, M. L., Weston, L. A., Snyder, J. C., Regnier, E. E. 1996Separating the effects of sorghum (Sorghum bicolor) and rye (Secale cereale) root and shoot residues on weed developmentWeed Sci.44402407Google Scholar
  15. Kluge, M., Schneider, B., Sicker, D. 1997Diastereoselective synthesis of the benzoxazinone acetal glucoside ent-GDIMBOA: The first enantiomer of a natural acetal glucosideCarb. Res.298147152Google Scholar
  16. Klun, J. A., Tipton, C. L., Brindley, T. A. 19672,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), an active agent in the resistance of maize to the European corn borerJ.Econ. Entomol.6015291533Google Scholar
  17. Large, E. C. 1954Growth stages in cereals, illustrations of Feekes scalePlant Pathol.3128129Google Scholar
  18. Liebel, R., Simmons, F. W., Wax, L. M., Stoller, E. W. 1992Effect of rye (Secale cereale) mulch on weed control and soil moisture in soybean (Glycine max)Weed Technol.6838846Google Scholar
  19. Lyons, P. C., Hipskind, J. D., Wood, K. V., Nicholson, R. L. 1988Separation and quantification of cyclic hydroxamic acids and related compounds by high-pressure liquid chromatographyJ. Agric. Food Chem.365760Google Scholar
  20. Masiunas, J. B., Weston, L. A., Weller, S. C. 1995The impact of rye cover crops on weed populations in a tomato cropping systemWeed Sci.43318323Google Scholar
  21. Melanson, D., Chilton, M.-D., Masters-Moore, D., Chilton, W. S. 1997A deletion in an indole synthase gene is responsible for the DIMBOA-deficient phenotype of bxbx maizeProc. Natl. Acad. Sci. USA941334513350Google Scholar
  22. Mwaja, V. N., Masiunas, J. B., Weston, L. A. 1995Effects of fertility on biomass, phytotoxicity, and allelochemical content of cereal ryeJ. Chem. Ecol.218195Google Scholar
  23. Niemeyer, H. M. 1988Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the GramineaePhytochemistry2733493358Google Scholar
  24. Niemeyer, H. M., Pesel, E., Copaja, S. V., Bravo, H. R., Franke, S., Francke, W. I. 1989Changes in hydroxamic acid levels of wheat plants induced by aphid feedingPhytochemistry28447449Google Scholar
  25. Putnam, A. R. 1993Weed allelopathyDuke, S. O. eds. Weed Physiology, Vol I. Reproduction and EcophysiologyCRC PressBoca Raton, FL131155Google Scholar
  26. Reberg-Horton, S. C., Burton, J. D., Danehower, D. A., Ma, G., Monks, D. W., Murphy, J. P., Ranells, N. N., Wiliamson, J. D., Creamer, N. G. 2005Changes over time in the allelochemical content of ten cultivars of rye (Secale cereale L.)J. Chem. Ecol.31179193Google Scholar
  27. Reemtsma, T. 2001The use of liquid chromatography-atmospheric pressure ionization-mass spectrometry in water analysis—Part II: obstaclesTrends Anal. Chem.20533542Google Scholar
  28. Schmitz-Afonso, I., Loyo-Rosales, J. E., Aviles, M. P., Rattner, B., Rice, C. 2003Determination of alkylphenol and alkylphenolethoxylates in biota by liquid chromatography with detection by tandem mass spectrometry and fluorescence spectroscopyJ. Chromatogr. A10102536Google Scholar
  29. Seefeldt, S. S., Jensen, J. E., Fuerst, E. P. 1995Log-logistic analysis of herbicide dose–response relationshipsWeed Technol.9218227Google Scholar
  30. Shilling, D. G., Jones, L. A., Worsham, A. D., Parker, C. E., Wilson, R. F. 1986Isolation and identification of some phytotoxic compounds from aqueous extracts of rye (Secale cereale L.)J. Agric. Food Chem.34633638Google Scholar
  31. Sicker, D., Prätorius, B., Mann, G., and Meyer L. 1989. A convenient synthesis of 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one. Synthesis 211–212.Google Scholar
  32. Streibig, J. C., Rudemo, M., Jensen, J. E. 1993Dose–response curves and statistical modelsStreibig, J. C.Kudsk, P. eds. Herbicide BioassaysCRC PressBoca Raton, FL3055Google Scholar
  33. Tang, C.-S., Chang, S. H., Hoo, D., Yanagihara, H. 1975Gas chromatographic determination of 2(3)-benzoxaxolinones from cereal plantsPhytochemistry1420772079Google Scholar
  34. Teasdale, J. R., Mohler, C. L. 1993Light transmittance, soil temperature, and soil moisture under residue of hairy vetch and ryeAgron. J.85673680Google Scholar
  35. Teasdale, J. R., Abdul-Baki, A. A., Mills, D. J., Thorpe, K. W. 2004Enhanced pest management with cover crop mulchesActa Hortic.638135140Google Scholar
  36. Tolonen, A. 2003. Analysis of secondary metabolites in plant and cell culture tissue of Hypercum perforatum L. and Rhodiola rosea L. Department of Chemistry, University of Oulu, FinlandGoogle Scholar
  37. Weston, L. A. 1996Utilization of allelopathy for weed management in agroecosystemsAgron. J.88860866Google Scholar
  38. Woodward, M. D., Corcuera, L. J., Helgeson, J. P., Kelman, A., Upper, C. D. 1979aQuantitation of 1,4-benzoxazin-3-ones in maize by gas–liquid chromatographyPlant Physiol.631419Google Scholar
  39. Woodward, M. D., Corcuera, L. J., Schnoes, H. K., Helgeson, J. P., Upper, C. D. 1979bIdentification of 1,4-benzoxazin-3-ones in maize extracts by gas–liquid chromatography and mass spectrometryPlant Physiol.63913Google Scholar
  40. Yenish, J. P., Worsham, A. D., Chilton, W. S. 1995Disappearance of DIBOA-glucoside, DIBOA, and BOA from rye (Secale cereale L.) cover crop residueWeed Sci.431820Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Clifford P. Rice
    • 1
    Email author
  • Yong Bong Park
    • 2
  • Frédérick Adam
    • 1
  • Aref A. Abdul-Baki
    • 3
  • John R. Teasdale
    • 3
  1. 1.USDA-ARS Environmental Quality LabBeltsvilleUSA
  2. 2.Faculty of Horticultural Life Science, College of AgricultureCheju National UniversityJejuSouth Korea
  3. 3.USDA-ARS Sustainable Agricultural Systems LabBeltsvilleUSA

Personalised recommendations