Journal of Chemical Ecology

, Volume 31, Issue 5, pp 969–988

Phenolic Compounds in Red Oak and Sugar Maple Leaves Have Prooxidant Activities in the Midgut Fluids of Malacosoma disstria and Orgyia leucostigma Caterpillars

  • Raymond Barbehenn
  • Susannah Cheek
  • Adrian Gasperut
  • Emma Lister
  • Rosalyn Maben
Research Article

Abstract

Phenolic compounds are generally believed to be key components of the oxidative defenses of plants against pathogens and herbivores. However, phenolic oxidation in the gut fluids of insect herbivores has rarely been demonstrated, and some phenolics could act as antioxidants rather than prooxidants. We compared the overall activities of the phenolic compounds in red oak (Quercus rubra) and sugar maple (Acer saccharum) leaves in the midgut fluids of two caterpillar species, Malacosoma disstria (phenolic-sensitive) and Orgyia leucostigma (phenolic-tolerant). Three hypotheses were examined: (1) ingested sugar maple leaves produce higher levels of semiquinone radicals (from phenolic oxidation) in caterpillar midgut fluids than do red oak leaves; (2) O. leucostigma maintains lower levels of phenolic oxidation in its midgut fluids than does M. disstria; and (3) phenolic compounds in tree leaves have overall prooxidant activities in the midgut fluids of caterpillars. Sugar maple leaves had significantly lower ascorbate:phenolic ratios than did red oak leaves, suggesting that phenolics in maple would oxidize more readily than those in oak. As expected, semiquinone radicals were at higher steady-state levels in the midgut fluids of both caterpillar species when they fed on sugar maple than on red oak, consistent with the first hypothesis. Higher semiquinone radical levels were also found in M. disstria than in O. leucostigma, consistent with the second hypothesis. Finally, semiquinone radical formation was positively associated with two markers of oxidation (protein carbonyls and total peroxides). These results suggest that the complex mixtures of phenolics in red oak and sugar maple leaves have overall prooxidant activities in the midgut fluids of M. disstria and O. leucostigma caterpillars. We conclude that the oxidative defenses of trees vary substantially between species, with those in sugar maple leaves being especially active, even in phenolic-tolerant herbivore species.

Key Words

Prooxidant phenolic compound oxidation caterpillar Malacosoma disstria Orgyia leucostigma peroxide semiquinone radical protein carbonyl red oak Quercus rubra sugar maple Acer saccharum 

References

  1. Ahmad, S. 1992Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insectsBiochem. Syst. Ecol.20269296Google Scholar
  2. Appel, H. M. 1993Phenolics in ecological interactions: The importance of oxidationJ. Chem. Ecol.1915211552Google Scholar
  3. Appel, H. M., >Schultz, J. C. 1994Oak tannins reduce effectiveness of Thuricide (Bacillus thuringiensis) in gypsy moth (Lepidoptera: Lymantriidae)J. Econ. Entomol.8717361742Google Scholar
  4. Baker, W. L. 1972. Eastern Forest Insects. USDA Miscellaneous Publication no. 1175, Washington, DC..Google Scholar
  5. Barbehenn, R. V. 2003Antioxidants in grasshoppers: Higher levels defend the midgut tissues of a polyphagous species than a graminivorous speciesJ. Chem. Ecol.29683702Google Scholar
  6. Barbehenn, R. V., Martin, M. M. 1992The protective role of the peritrophic membrane in the tannin-tolerant larvae of Orgyia leucostigma (Lepidoptera)J. Insect Physiol.38973980Google Scholar
  7. Barbehenn, R. V., Martin, M. M. 1994Tannin sensitivity in Malacosoma disstria: Roles of the peritrophic envelope and midgut oxidationJ. Chem. Ecol.2019852001Google Scholar
  8. Barbehenn, R. V., Martin, M. M., Hagerman, A. E. 1996Reassessment of the roles of the peritrophic envelope and hydrolysis in protecting polyphagous grasshoppers from ingested hydrolyzable tanninsJ. Chem. Ecol.2219111929Google Scholar
  9. Barbehenn, R. V., Bumgarner, S. L., Roosen, E. F., Martin, M. M. 2001Antioxidant defenses in caterpillars: Role of the ascorbate-recycling system in the midgut lumenJ. Insect Physiol.47349357Google Scholar
  10. Barbehenn, R. V., Walker, A. C., Uddin, F. 2003Antioxidants in the midgut fluids of a tannin-tolerant and a tannin-sensitive caterpillar: Effects of seasonal changes in tree leavesJ. Chem. Ecol.2910991116Google Scholar
  11. Barbehenn, R. V., Poopat, U., Spencer, B. 2003Semiquinone and ascorbyl radicals in the gut fluids of caterpillars measured with EPR spectrometryInsect Biochem. Mol. Biol.33125130Google Scholar
  12. Bi, J. L., Felton, G. W. 1995Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistanceJ. Chem. Ecol.2115111530Google Scholar
  13. Bi, J. L., Murphy, J. B., Felton, G. W. 1997Antinutritive and oxidative components as mechanisms of induced resistance in cotton to Helicoverpa zeaJ. Chem. Ecol.2397117Google Scholar
  14. Bravo, L. 1998Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significanceNutr. Rev.56317333Google Scholar
  15. Buettner, G. 1993The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol, and ascorbateArch. Biochem. Biophys.300535543Google Scholar
  16. Cadenas, E. 1995

    Mechanisms of oxygen activation and reactive oxygen species detoxification

    Ahmad, S. eds. Oxidative Stress and Antioxidant Defenses in BiologyChapman and HallNew York161
    Google Scholar
  17. Canada, A. T., Giannella, E., Nguyen, T. D., Mason, R. P. 1990The production of reactive oxygen species by dietary flavonolsFree Radic. Biol. Med.9441449Google Scholar
  18. Duffey, S. S., Stout, M. J. 1996Antinutritive and toxic components of plant defense against insectsArch. Insect Biochem. Physiol.32337Google Scholar
  19. Felton, G. W. 1996Nutritive quality of plant protein: Sources of variation and insect herbivore responsesArch. Insect Biochem. Physiol.32107130Google Scholar
  20. Felton, G. W., Donato, K. K., Vecchio, R. J., Duffey, S. S. 1989Activation of plant polyphenol oxidases by insect feeding damage reduces the nutritive quality of foliageJ. Chem. Ecol.1526672694Google Scholar
  21. Felton, G. W., Donato, K. K., Broadway, R. M., Duffey, S. S. 1992Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivoreJ. Insect Physiol.38277285Google Scholar
  22. Galati, G., Sabzevari, O., Wilson, J. X., O’brien, P. J. 2002Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolicsToxicology17791104Google Scholar
  23. Gant, T. W., Ramakrishna, R., Mason, R. P., Cohen, G. M. 1988Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytesChem.-Biol. Interact.65157173Google Scholar
  24. Graham, H. D. 1992Stabilization of the Prussian blue color in the determination of polyphenolsJ. Agric. Food Chem.40801805Google Scholar
  25. Hagerman, A. E., Riedl, K. M., Jones, G. A., Sovik, K. N., Ritchard, N. T., Hartzfeld, P. W., Riechel, T. L. 1998High molecular weight plant polyphenolics (tannins) as biological antioxidantsJ. Agric. Food Chem.46188189Google Scholar
  26. Hagerman, A. E., Dean, R. T., Davies, M. J. 2003Radical chemistry of epigallocatechin gallate and its relevance to protein damageArch. Biochem. Biophys.414115120Google Scholar
  27. Halliwell, B., Gutteridge, J. M. C. 1999Free Radicals in Biology and MedicineOxford University PressOxfordGoogle Scholar
  28. Harborne, J. B. 1985

    Phenolics and plant defence

    Sumere, C. F.Lea, P. J. eds. The Biochemistry of Plant PhenolicsOxford University PressNew York393408
    Google Scholar
  29. Hoover, K., Kishida, K. T., Digiorgio, L. A., Workman, J., Alaniz, S. A., Hammock, B. D., Duffey, S. S. 1998Inhibition of baculoviral disease by plant-mediated peroxidase activity and free radical generationJ. Chem. Ecol.2419492001Google Scholar
  30. Johnson, K. S., Barbehenn, R. V. 1999Oxygen levels in the gut lumens of herbivorous insectsJ. Insect Physiol.46897903Google Scholar
  31. Johnson, K. S., Felton, G. W. 2001Plant phenolics as dietary antioxidants for herbivorous insects: A test with genetically modified tobaccoJ. Chem. Ecol.2725792597Google Scholar
  32. Karowe, D. N. 1989Differential effect of tannic acid on two tree-feeding Lepidoptera: Implications for theories of plant anti-herbivore chemistryOecologia80507512Google Scholar
  33. Larson, R. A. 1995

    Antioxidant mechanisms of secondary natural products

    Ahmad, S. eds. Oxidant-Induced Stress and Antioxidant Defenses in BiologyChapman and HallNewYork210237
    Google Scholar
  34. Lykkesfeldt, J., Loft, S., Poulsen, H. E. 1995Determination of ascorbic acid and dehydroascorbic acid in plasma by high-performance liquid chromatography with coulometric detection—Are they reliable biomarkers of oxidative stress?Anal. Biochem.229329335Google Scholar
  35. Metadiewa, D., Jaiswal, A. K., Cenas, N., Dickancaite, E., Segura-Auilar, N. 1999Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal productFree Radic. Biol. Med.26107116Google Scholar
  36. Nicol, R. W., Arnason, J. T., Helson, B., Abou-Zaid, M. M. 1997Effect of host and non-host trees on the growth and development of the forest tent caterpillar, Malacosoma disstria Hübner (Lepidoptera: Lasiocampidae)Can. Entomol.1299951003Google Scholar
  37. Nourooz-Zadeh, J., Tajaddini-Sarmadi, J., Wolff, S. P. 1994Measurement of plasma hydroperoxide concentrations by the ferrous oxidation–xylenol orange assay in conjunction with triphenylphosphineAnal. Biochem.220403409Google Scholar
  38. Ossipova, S., Ossipov, V., Haukioja, E., Loponen, J., Pihlaja, K. 2001Proanthocyanidins of mountain birch leaves: Quantification and propertiesPhytochem. Anal.12128133Google Scholar
  39. Pardini, R. S. 1995Toxicity of oxygen from naturally occurring redox-active pro-oxidantsArch. Insect Biochem. Physiol.29101118Google Scholar
  40. Price, M. P., Butler, L. G. 1977Rapid visual estimation and spectrophotometric determination of tannin content of Sorghum grainJ. Agric. Food Chem.2512681273Google Scholar
  41. Quinlan, G. J., Gutteridge, J. M. C. 2000

    Carbonyl assay for oxidative damage to proteins

    Taniguchi, N.Gutteridge, J. M. C. eds. Experimental Protocols for Reactive Oxygen and Nitrogen SpeciesOxford University PressOxford257258
    Google Scholar
  42. Reznick, A. Z., Packer, L. 1994Oxidative damage to proteins: Spectrophotometric method for carbonyl assayMethods Enzymol.233357371Google Scholar
  43. Sakihama, Y., Cohen, M. F., Grace, S. C., Yamasaki, H. 2002Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plantsToxicology1776780Google Scholar
  44. Salminen, J.-P., Lempa, K. 2002Effects of hydrolyzable tannins on a herbivorous insect: Fate of individual tannins in insect digestive tractChemocology12203211Google Scholar
  45. Salminen, J.-P., Ossipov, V., Loponen, J., Haukioja, E., Pihlaja, K. 1999Characterization of hydrolyzable tannins from leaves of Betula pubescens by high-performance liquid chromatography–mass spectrometryJ. Chromatrogr., A864283291Google Scholar
  46. Salminen, J.-P., Roslin, T., Karonen, M., Sinkkonen, J., Pihlaja, K., Pulkkinen, P. 2004Seasonal variation in the content of hydrolysable tannins, flavonoid glycosides, and proanthocyanidins in oak leavesJ. Chem. Ecol.3016751693Google Scholar
  47. SAS Institute. 2000. The SAS System for Windows. Version 8e. SAS Institute, Cary, NC, USAGoogle Scholar
  48. Stehr, W. F. and Cook, E. F. 1968. A revision of the genus Malacosoma Hübner in North America (Lepidoptera: Lasiocampidae): Systematics, biology, immatures, and parasites. Smithsonian Inst., U.S. Nat. Mus. Bull. no. 276Google Scholar
  49. Stoscheck, C. M. 1990Increased uniformity in the response of the Coomassie blue G protein assay to different proteinsAnal. Biochem.184111116Google Scholar
  50. Sugihara, N., Arakawa, T., Ohnishi, M., Furuno, K. 1999Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with α-linolenic acidFree Radic. Biol. Med.2713131323Google Scholar
  51. Summers, C. B., Felton, G. W. 1994Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuiidae): Potential mode of action for phenolic compounds in plant anti-herbivore chemistryInsect Biochem. Mol. Biol.24943953Google Scholar
  52. Thiboldeaux, R. L., Lindroth, R. L., Tracy, J. W. 1998Effects of juglone (5-hydroxy-1,4-naphthoquinone) on midgut morphology and glutathione status in Saturniid moth larvaeComp. Biochem. Physiol.120481487Google Scholar
  53. Thompson, R. H. 1964

    Structure and reactivity of phenolic compounds

    Harborne, J. B. eds. Biochemistry of Phenolic CompoundsAcademic PressNew York132
    Google Scholar
  54. Vinson, J. A., Proch, J., Bose, P. 2001Determination of quantity and quality of polyphenol antioxidants in foods and beveragesMethods Enzymol.335103114Google Scholar
  55. Wang, J., Constabel, C. P. 2004Polyphenol oxidase overexpression in transgenic Populus leaves enhances resistance to forest tent caterpillar (Malacosoma disstria) herbivoryPlanta2208796Google Scholar
  56. Wilkinson, L. 2000SYSTAT: The System for StatisticsSYSTAT, Inc.Evanston, ILGoogle Scholar
  57. Zheng, J., Cho, M., Jones, A. D., Hammock, B. D. 1997Evidence of quinone metabolites of naphthalene covalently bound to sulfur nucleophiles of proteins of murine clara cells after exposure to napthaleneChem. Res. Toxicol.1010081014Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Raymond Barbehenn
    • 1
  • Susannah Cheek
    • 1
  • Adrian Gasperut
    • 1
  • Emma Lister
    • 1
  • Rosalyn Maben
    • 1
  1. 1.Departments of Molecular, Cellular and Developmental Biology, Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborUSA

Personalised recommendations