Journal of Chemical Ecology

, Volume 31, Issue 2, pp 377–392

Stir Bar Sorptive Extraction: A New Quantitative and Comprehensive Sampling Technique for Determination of Chemical Signal Profiles from Biological Media

  • Helena A. Soini
  • Kevin E. Bruce
  • Donald Wiesler
  • Frank David
  • Pat Sandra
  • Milos V. Novotny
Article

Abstract

Various applications of a novel sampling procedure in chemical ecology are outlined. The stir bar extraction method features the analytical reproducibility needed in recording the analytical profiles of volatile and semivolatile components of biological mixtures. This methodology has been demonstrated here through the examples of small volume urine samples, glandular tissue volatiles, and the air blown through animal cages. Its analytical merits are compared with those of the previously established purge-and-trap (dynamic headspace) technique.

Keywords

Pheromones chemical signals hamster urine methods mouse urine rat preputial gland rat odor volatiles stir bar sorptive extraction gas chromatography–mass spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baltussen, E., David, F., Sandra, P., Janssen, H.-G., and Cramers, C. A. 1998. Sorption tubes packed with polydimethylsiloxane: A new and promising technique for the preconcentration of volatiles and semivolatiles from air and gaseous samples. J. High Resol. Chromatogr. 21:332-340.Google Scholar
  2. Baltussen, E., Sandra, P., David, F., and Cramers, C. 1999. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcolumn Sep. 11:737–747.Google Scholar
  3. Baltussen, E., Cramers, C. A., and Sandra, P. J. F. 2002. Sorptive sample preparation—a review. Anal. Bioanal. Chem. 373: 3–22.Google Scholar
  4. Benijts, T., Vercammen, J., Dams, R., Tuan, H. P., Lambert, W., and Sandra, P. 2001. Stir bar sorptive extraction-thermal desorption-capillary gas chromatography-mass spectrometry applied to the analysis of polychlorinated biphenyls in human sperm. J. Chromatogr. B. Biomed. Sci. Appl. 755:137–142.Google Scholar
  5. Bicchi, C., Iori, C., Rubiolo, P., and Sandra, P. 2002. Headspace sorptive extraction (HSSE), stir bar sorptive extraction (SBSE) and solid phase microextraction (SPME) applied to the analysis of roasted Arabica coffee and coffee brew. J. Agric. Food Chem. 50:449–459.Google Scholar
  6. Boschat, C., Pélofi, C., Randin, O., Roppolo, D., Lüscher, C., Broillet, M.-C., and Rodriguez, I. 2002. Pheromone detection mediated by V1r vomeronasal receptor. Nat. Neurosci. 5:1261–1262.Google Scholar
  7. Bruheim, I., Liu, X., and Pawliszyn, J. 2003. Thin-film microextraction. Anal. Chem. 75:1002–1010.Google Scholar
  8. Burger, B. V., Tien, F.-C., Le Roux, M., and Mo, W.-P. 1996. Mammalian exocrine secretions: X. Constituents of preorbital secretion of grysbok, Raphicerus melanotis. J. Chem. Ecol. 22:739-764.Google Scholar
  9. Dehnhard, M., Heistermann, M., Göritz, F., Hermes, R., Hildebrandt, T., and Haber, H. 2001. Demonstration of 2-unsaturated C19-steroids in the urine of female Asian elephants, Elephas maximus, and their dependence on ovarian activity. Reproduction 121:475–484.Google Scholar
  10. Díez, J., Domínguez, C., Guillén, D. A., Veas, R., and Barroso, C. G. 2004. Optimization of stir bar sorptive extraction for the analysis of volatile phenols in wines. J. Chromatogr. A 1025:263–267.Google Scholar
  11. Finlayson, J. S., Asofsky, R., Potter, M., and Runner, C. C. 1965. Major urinary protein complex of normal mice: Origin. Science 149:981–982.Google Scholar
  12. Fustinoni, S., Giampiccolo, R., Pulvirenti, S., Buratti, M., and Colombi, A. 1999. Headspace solid-phase microextraction for the determination of benzene, toluene, ethylbenzene and xylenes in urine. J. Chromatogr. B 723:105–115.Google Scholar
  13. Holt, R. U. 2001. Mechanisms effecting analysis of volatile flavour components by solid-phase microextraction and gas chromatography. J. Chromatogr. A 937:107–114.Google Scholar
  14. Jemiolo, B., Gubernick, D. J., Yoder, M. C., and Novotny, M. V. 1994. Chemical characterization of urinary volatile compounds of Peromyscus californicus, a monogamous biparental rodent. J. Chem. Ecol. 20:2489–2500.Google Scholar
  15. Kreck, M., Scharrer, A., Bilke, S., and Mosandl, A. 2002. Enantioselective analysis of monoterpene compounds in essential oils by stir bar sorptive extraction (SBSE)-enantio-MDGC-MS. Flavour Fragr. J. 17:32–40.Google Scholar
  16. Leinders-Zufall, T., Lane, A. P., Puche, A. C., Ma, W., Novotny, M. V., Shipley, M. T., and Zufall, F. 2000. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405:792–796.Google Scholar
  17. Luo, Y., Pan, L., and Pawliszyn, J. 1998. Determination of five benzodiazepines in aqueous solution and biological fluids using solid-phase microextraction with CarbowaxTM/DVB fiber coating. J. Microcolumn Sep. 10:193–201.Google Scholar
  18. Ma, W., Wiesler, D., and Novotny, M. V. 1999. Urinary volatile profiles of the deermouse (Peromyscus maniculatus) pertaining to gender and age. J. Chem. Ecol. 25:417–431.Google Scholar
  19. Moss, R. L., Flynn, R. E., Shen, X.-M., Dudley, C., Shi, J., and Novotny, M. 1997. Urine-derived compound evokes membrane responses in mouse vomeronasal receptor neurons. J. Neurophysiol. 77:2856–2862.Google Scholar
  20. Novotny, M., McConnell, M. L., and Lee, M. L. 1974a. Some aspects of high-resolution gas-chromatographic analyses of complex volatile samples. J. Agric. Food Chem. 22:765–769.Google Scholar
  21. Novotny, M., Lee, M. L., and Bartle. K. D. 1974b. Analytical aspects of the chromatographic headspace concentration methods using a porous polymer. Chromatographia 7:333–338.Google Scholar
  22. Novotny, M., Jorgenson, J. W., Carmack, M., Wilson, S. R., Boyse, E. A., Yamazaki, K., Wilson, M., Beamer, M., and Whitten, W. K. 1980. Chemical studies of the primer mouse pheromones, pp. 377–390, in D. Müller-Schwarze and R. M. Silverstein (eds.). Chemical Signals—Vertebrates and Aquatic Invertebrates. Plenum Press, New York.Google Scholar
  23. Novotny, M., Jemiolo, B., and Harvey, S. 1990. Chemistry of rodent pheromones: Molecular insights into chemical signalling in mammals, pp. 1-22, in D. W. MacDonald, D. Müller-Schwarze, and S. E. Natynczuk (eds.). Chemical Signals in Vertebrates 5. Oxford University Press, New York.Google Scholar
  24. Novotny, M. V. 2003. Pheromones, binding proteins and receptor responses in rodents. Biochem. Soc. Trans. 31: 117–122.Google Scholar
  25. Pawliszyn, J. 1997. Solid-Phase Microextraction—Theory and Practice. Wiley, New York.Google Scholar
  26. Peñalver, A., García, V., Pocorull, E., Borrull, F., and Marcé, R. M. 2003. Stir bar sorptive extraction and large volume injection gas chromatography to determine a group of endocrine disrupters in water samples. J. Chromatogr. A 1007:1–9.Google Scholar
  27. Pino, J., Marti, M. P., Mestres, M., Perez, J., Busto, O., and Guasch, J. 2002. Headspace solid-phase microextraction of higher fatty acid ethyl esters in white rum aroma. J. Chromatogr. A954:51–57.Google Scholar
  28. Rasmussen, L. E. L., Hess, D., and Haight, J. D. 1990. Chemical analysis of temporal gland secretions collected from an Asian bull elephant during a four-month musth episode. J. Chem. Ecol. 16:2167–2181.Google Scholar
  29. Schwende, F. J., Jorgenson, J. W., and Novotny, M. 1984. Possible chemical basis for histocompatibility-related mating preference in mice. J. Chem. Ecol. 10:1603–1615.Google Scholar
  30. Schwende, F. J., Wiesler, D., Jorgenson, J. W., Carmack, M., and Novotny, M. 1986. Urinary volatile constituents of the house mouse, Mus musculus, and their endocrine dependency. J. Chem. Ecol. 12:277–296.Google Scholar
  31. Tienpont, B., David, F., Bicchi, C., and Sandra, P. 2000. High capacity headspace sorptive extraction. J. Microcolumn Sep. 12:577–584.Google Scholar
  32. Tienpont, B., David, F., Desmet, K., and Sandra, P. 2002. -Stir bar sorptive extraction-thermal desorption-capillary GC-MS applied to biological fluids. Anal. Bional. Chem. 373:46–55.Google Scholar
  33. Tienpont, B., David, F., Benijts, T., and Sandra, P. 2003. Stir bar sorptive extraction-thermal desorption-capillary GC-MS for profiling and target component analysis of pharmaceutical drugs in urine. J. Pharm. Biomed. Anal. 32:569–579.Google Scholar
  34. Tredoux, A. G. J., Lauer, H. H., Heideman, T., and Sandra, P. 2000. The determination of benzoic acid in lemon flavored beverages by stir bar sorptive extraction-CGC-MS. J. High Resol. Chromatogr23:644–646.Google Scholar
  35. Zhang, Z. and Pawliszyn, J. 1993. Headspace solid-phase microextraction. Anal. Chem. 65:1843–1852.Google Scholar
  36. Zidek, L., Stone, M. J., Lato, S. M., Pagel, M. D, Miao, Z., Ellington, A. D., and Novotny, M. V. 1999. NMR mapping of the recombinant mouse major urinary protein I binding site occupied by the pheromone 2-sec-butyl-4,5-dihydrothiazole. Biochemistry38:9850–9861.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Helena A. Soini
    • 1
  • Kevin E. Bruce
    • 1
  • Donald Wiesler
    • 1
  • Frank David
    • 2
  • Pat Sandra
    • 2
  • Milos V. Novotny
    • 1
  1. 1.Department of Chemistry, Institute for Pheromone ResearchIndiana UniversityBloomingtonUSA
  2. 2.Research Institute for ChromatographyKortrijkBelgium

Personalised recommendations