Journal of Chemical Ecology

, Volume 31, Issue 2, pp 315–331 | Cite as

Kinetics of the Natural Evolution of Hydrogen Cyanide in Plants in Neotropical Pteridium arachnoideum and its Ecological Significance

  • Miguel E. Alonso-AmelotEmail author
  • Alberto Oliveros-Bastidas


The time-dependent natural release of hydrogen cyanide (HCN) was studied quantitatively using young croziers of the neotropical bracken fern Pteridium arachnoideum. HCN production was quantified in crushed tissue using a flow reactor at 30.0 ± 0.1C. Released HCN was carried into appropriate traps with a moist air flow. Aliquots were drawn from the traps at fixed time intervals, and the HCN concentration was evaluated spectroscopically. All available prunasin (Pru), the only cyanogenic glycoside present, underwent decomposition into HCN in less than 1200 min. Fiddleheads (N = 76) contained 1.84–107.70 mg Pru g−1 dw in a continuous fashion suggesting genetic polymorphism. Acyanogenic morphs were rare (1/77). From the kinetics of the samples with Pru content near the median histographic distribution (N = 46), accumulated HCN formation as a function of time, initial velocities, average HCN production rate, and corresponding rate equations were obtained. Initial and average velocities correlated well with total Pru content. The yield of cyanide liberation varied widely between 0.51 and 47.86 μ g HCN min−1 g−1 dw and was a linear function of [Pru] t . However, the β-glucosidase enzyme involved in this reaction was not rate limiting and occurs in excess in the natural system. Enzyme activity was found to be independent of [Pru] t . The contribution of HCN as an allomone-upon-request against herbivores was assessed quantitatively. Bracken fiddleheads produced a pulse of HCN soon after tissue injury that waned rapidly, leaving a large portion of intact prunasin to decompose more slowly in the herbivore’s lumen. The balance between the external and internal courses was found to depend on the concentration of prunasin in the plant, the amount of crozier eaten, and the time used to consume it.


Cyanogenesis kinetics defense herbivory Pteridium arachnoideum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso-Amelot, M. E. 2002. The chemistry and toxicology of bioactive compounds in Bracken Fern (Pteridium ssp.) with special reference to chemical ecology and carcinogenesis, pp. 685–740, inAtta-Uhr-Rahman (ed.). Studies in Natural Product Chemistry. Vol. 26, Elsevier Science, Amsterdam.Google Scholar
  2. Alonso-Amelot, M. E. and Oliveros, A. 2000. A method for the practical quantification of cyanogenesis in plant material. Phytochem. Anal. 11:309–316.Google Scholar
  3. Alonso-Amelot, M. E. and Rodulfo, S. 1996.Comparative spatial distribution, size, biomass, and growth rate of two varieties of bracken fern (Pteridium aquilinum L. Kuhn) in a neotropical montane habitat. Vegetatio (Plant Ecol.) 125:137–147.Google Scholar
  4. Bauer, M., Griengl, H., and Steiner, W. 1999. Kinetic studies on the enzyme (S)-hydroxynitrile lyase from Hevea brasiliensis using initial rate methods and progress curve analysis. Biotechnol. Bioeng. 62:20–29.Google Scholar
  5. Beesley, S. G., Compton, S. G., and Jones, D. A. 1985. Rhodanese in insects. J. Chem. Ecol. 11:45–50.Google Scholar
  6. Berti, G. and Bottari, F. 1968. Constituents of ferns. Prog. Phytochem. 1:589–685.Google Scholar
  7. Brimer, L., Christensen, S. B., Molgaard, P., and Nartey, R. 1983. Determination of cyanogenic compounds by thin-layer chromatography. A densitometric method for quantification of cyanogenic glycosides, employing enzyme preparations (β -glucosidase) from helix pomatia and picrate-impregnated ion-exchange sheets. J. Agric. Food Chem.31:789–793.Google Scholar
  8. Brinker, A. M. and Seigler, D. S. 1992. Determination of cyanide and cyanogenic glucosides from plants, pp. 359–381, in H. F. Linskins and J. F. Jackson (eds.). Plant Toxin Analysis. Springer-Verlag, Berlin.Google Scholar
  9. Butler, G. W. 1965. The distribution of the cyanoglucosides linamarin and lotaustralin in higher plants. Phytochemistry 4:127–131.Google Scholar
  10. Conn, E. E. 1979. Cyanide and cyanogenic glycosides, pp. 387–412, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores, Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  11. Conn, E. E. 1981. Cyanogenic glycosides, pp. 479–500, inE. E. Conn (ed.). The Biochemistry of Plants. Vol. 7. Academic Press, New York.Google Scholar
  12. Cooper-Driver, G. A., Finch, S., Swain T., and Bernays, E. A. 1977. Seasonal variation in secondary plant compounds in relation to the palatability of Pteridium aquilinum. Biochem. Syst. Ecol. 5:177–183.Google Scholar
  13. Ellis, W. M., Keymer, R. J., and Jones, D. A. 1977. The defensive function of cyanogenesis in natural populations. Experientia33:309–311.Google Scholar
  14. Gebrehiwot, L. and Beuselinck, P. R. 2001. Seasonal variations in hydrogen cyanide concentration of three lotus species. Agric. J. 93:603–608.Google Scholar
  15. Gleadow, R. M. and Woodrow, I. E. 2000. Temporal and spatial variation in cyanogenic glycosides in Eucalyptus cladocalyx. Tree Physiol. 20:591–598.Google Scholar
  16. Gleadow, R. M. and Woodrow, I. E. 2002. Constraints on effectiveness of cyanogenic glycosides in herbivore defense. J. Chem. Ecol. 28:1301–1313.Google Scholar
  17. Goodger, J. Q. D., R. J. Capon I. E. Woodrow (2002). Cyanogenic polymorphism in Eucalyptus polyanthemos Schauer subsp. vestita L. Johnson and K. Hill (Myrtaceae). Biochem. Syst. Ecol. 30:617–630.Google Scholar
  18. Hadfield, P. R. and Dyer, A. F. 1986. Polymorphism of cyanogenesis in British populations of bracken (Pteridium aquilinum L. Kuhn), pp. 293–300, in R. T. Smith and J. A. Taylor (eds.). Bracken: Ecology, Land Use and Control Technology. Parthenon Press, Carnforth.Google Scholar
  19. Hruska, A. J. 1988. Cyanogenic glucosides as defense compounds. A review of the evidence. J. Chem. Ecol. 14:2213–2217.Google Scholar
  20. Jones, C. G. 1983. Phytochemical variation, colonization and insect communities: The case of bracken ferns (Pteridium aquilinum), pp. 513–558, in R. F. Denno and M. S. McClure (eds.). Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York & London.Google Scholar
  21. Jones, D. A. 1973. Coevolution and cyanogenesis, pp. 213–242, in V. H. Heywood (ed.). Taxonomy and Ecology. Academic Press, London.Google Scholar
  22. Jones, D. A. 1998. Why are so many food plants cyanogenic? Phytochemistry 47:155–162.Google Scholar
  23. Jones, D. A., Keymer, R. J., and Ellis, W. M. 1978. Cyanogenesis in plant and animal feeding, pp. 21–34, in J. B. Harborne (ed.). Biochemical Aspects in Plant and Animal Evolution. Academic Press, London.Google Scholar
  24. Jorns, M. S. 1980. Studies on the kinetics of cyanohydrin synthesis and cleavage by the flavoenzyme oxynitrilase. Biochem. Biophys. Acta 613:203–209.Google Scholar
  25. Kofod, H. and Eyjolfsson, R. 1966. The isolation of the cyanogenic glycoside prunasin from Pteridium aquilinum. Tetrahedron Lett. 12:1289–1291.Google Scholar
  26. Lawton, J. H. 1976. The structure of the arthropod community on bracken. Bot. J. Linn. Soc. 73:187–216.Google Scholar
  27. Low, V. H. K. and Thomson, J. A. 1990. Cyanogenesis in Australian bracken (Pteridium esculentum): Distribution of cyanogenic phenotypes and factors influencing activity of the cyanogenic glucosidase, pp. 105–111, in J. A. Thomson and R. T. Smith (eds.). Bracken Biology and Management. Australian Institute of Agricultural Science AIAS Occasional Publication No. 40. Wahroonga, New South Wales, Australia.Google Scholar
  28. Magalhaes, C. P., Xavier, J., and Campos, A. P. 2000. Biochemical basis of the toxicity of manipueira (liquid extract of cassava roots) to nematodes and insects. Phytochem. Anal. 11:57–60.Google Scholar
  29. Muhtasib, B. and Evans, D. L. 1987. Linamarin and histamine in the defense of adult Zygaena filipendulae. J. Chem. Ecol. 13(1):133–142.Google Scholar
  30. Nahrstedt, A. 1985. Cyanogenesis and the role of cyanogenic compounds in insects. Plant Syst. Evol. 150:35–47.Google Scholar
  31. Nahrstedt, A. 1988. Cyanogenic compounds as protecting agents for organisms, pp. 131–150, in D. Evered and S. Harnett (eds.). Cyanide Compounds in Biology. John Wiley & Sons, Chichester, United Kingdom.Google Scholar
  32. Ortega, F. J. 1990. El género Pteridium en Venezuela: Taxonomía y distribución geográfica. Biollania 7:47–56.Google Scholar
  33. Peterson, S. C., Johnson, N. D., and Leguyader, J. L. 1987. Defensive regurgitation of allelochemicals derived from host cyanogenesis by eastern tent caterpillars. Ecology 68:1268–1272.Google Scholar
  34. Salinas, P. J. and Ortega S. J. 1990. Comunidades de artrópodos en la maleza Pteridium aquilinum (L.) Kuhn en los Andes Venezolanos y primer hallazgo de Acyrthosiphon cyatheae Holman (homoptera:aphididae) en Suramérica. Turrialba 40:168–171.Google Scholar
  35. Schappert, P. J. and Shore, J. S. 1999a. Cyanogenesis, herbivory, and plant defense in Turnera ulmifolia on Jamaica. Ecoscience6:511–520.Google Scholar
  36. Schreiner, I., Nafus, D., and Pimentel, D. 1984. Effects of cyanogenesis in bracken fern (Pteridium auqilinum) on associated insects. Ecol. Entomol. 9:69–70.Google Scholar
  37. Seigler, D. S., 1998. Cyanogenic glycosides and cyanolipids, pp. 273–296, in D. S. Seigler (ed.). Plant Secondary Metabolism. Kluwer Academic Press, Boston.Google Scholar
  38. Thomsen, K. and Brimer, L. 1997. Cyanogenic constituents in woody plants in natural lowland rainforest in Costa Rica. Bot. J. Linn. Soc. 124:273–294.Google Scholar
  39. Vetter, J. 2000. Plant cyanogenic glycosides. Toxicon 38:11–36.Google Scholar
  40. Viette, M., Tettamanti, C., and Saucy, F. 2000. Preference for acyanogenic white clover (Trifolium repens) in the vole Arvicola terrestris. II. Generalization and further investigations. J. Chem. Ecol. 26:101–122.Google Scholar
  41. Zagrobelny, M., Bak, S., Rasmussen, A. V., J⊘rgensen, B., Naumann, C. M., and M⊘ller, B. L. (2004). Cyanogenic glycosides and plant–insect interactions. Phytochemistry 65:293–306.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Miguel E. Alonso-Amelot
    • 1
    Email author
  • Alberto Oliveros-Bastidas
    • 1
  1. 1.Departamento de Química, Facultad de Ciencias Grupo de Química EcológicaUniversidad de Los AndesMéridaVenezuela

Personalised recommendations