Journal of Chemical Ecology

, Volume 31, Issue 2, pp 303–313 | Cite as

Effect of Volatile Constituents from Securidaca Longepedunculata on Insect pests Of Stored Grain

  • Thamara K. Jayasekara
  • Philip C. Stevenson
  • David R. Hall
  • Steven R. BelmainEmail author


Securidaca longepedunculata Fers (Polygalaceae) is commonly used as a traditional medicine in many parts of Africa as well as against a number of invertebrate pests, including insects infesting stored grain. The present study showed that S. longepedunculata root powder, its methanol extract, and the main volatile component, methyl salicylate, exhibit repellent and toxic properties to Sitophilus zeamais adults. Adult S. zeamais that were given a choice between untreated maize and maize treated with root powder, extract, or synthetic methyl salicylate in a four-way choice olfactometer significantly preferred the control maize. Methyl salicylate vapor also had a dose-dependant fumigant effect against S. zeamais, Rhyzopertha dominica, and Prostephanus truncates, with a LD100 achieved with a 60 μl dose in a 1-l container against all three insect species after 24 hr of exposure. Probit analyses estimated LD50 values between 34 and 36 μl (95% CI) for all insect species. Furthermore, prolonged exposure for 6 days showed that lower amounts (30 μl) of methyl salicylate vapor were able to induce 100% adult mortality of the three insect species. The implications are discussed in the context of improving stored product pest control by small-scale subsistence farmers in Africa.


Securidacalongepedunculata Polygalaceae methyl 2-hydroxybenzoate methyl salicylate olfactometer fumigant toxicity Sitophiluszeamais Rhyzoperthadominica Prostephanustruncatus. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assi, L. A. and Guinko, S. 1991. Plants Used in Traditional Medicine in West Africa Hoffman-La Roche Ltd., Switzerland, 106 p.Google Scholar
  2. Barrer, P. M. 1983. A demonstration of odor-based, host-food finding behavior in several species of stored grain insects. J. Stored Prod. Res. 9:105–110.Google Scholar
  3. Bashir, T., Birkinshaw, L. A., Hall, D. R., and Hodges, R. J. 2001. Host odors enhance the responses of adult Rhyzopertha dominica to male-produced aggregation pheromone. Entomol. Exp. Appl. 101:273–280.Google Scholar
  4. Belmain, S. R. 2002. Botanicals, pp. 280–283, in P. Golob, G. Farrell, J. E. Orchard (eds.). Crop Post-Harvest Science and Technology, Vol. 1. Principles and Practice. Blackwell Science, Oxford, UK.Google Scholar
  5. Belmain, S. R., G. E. Neal, D. E. Ray, P Golob. 2001. Insecticidal and vertebrate toxicity associated with ethnobotanicals used as post-harvest protectants in Ghana. Food Chem. Toxicol. 39:287–291.Google Scholar
  6. Belmain, S. R. and Stevenson P. C. 2001. Ethnobotanicals in Ghana: Reviving and modernizing age-old farmer practice. Pest. Outlook. 12:233–238.Google Scholar
  7. Boeke, S. J., Baumgart, I. R., and Van Loon, J. J. A. 2004. Toxicity and repellence of African plants traditionally used for the protection of stored cowpea against Callosobruchus maculatus. J. Stored Prod. Res.40:423–438.Google Scholar
  8. Boeke, S. J., Van Loon, J. J. A., Van Huis, A., D. K. Kossou, and Dicke, M. 2001. The Use of Plant Materials to Protect Stored Leguminous Seeds Against Seed Beetles: A Review. Wageningen University Papers, Backhuys Publishers, NL Leiden, 108 p.Google Scholar
  9. Cardoza, Y. J., H. T. Alborn, J. H. Tumlinson 2002. In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. J. Chem. Ecol. 28:161–174.Google Scholar
  10. Chan, Y. K. T. 1996. Medicated oils and severe salicylate poisoning: Quantifying the risk based on methyl salicylate content and bottle size. Vet. Human Toxicol. 38:133–134.Google Scholar
  11. Clark, G. S. 1999. An aroma-chemical profile. Methyl salicylate, or oil of wintergreen. Perfumer Flavorist 24:5–11.Google Scholar
  12. De Boer, J. G. and Dicke, M. 2004. The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimili. J. Chem. Ecol.30:255–271.Google Scholar
  13. Dickens, J. C. 2000. Orientation of Colorado potato beetle to natural and synthetic blends of volatiles emitted by potato plants. Agric. Forest Entomol. 2:167–172.Google Scholar
  14. Hardie, J., R. Isaacs, J. A. Pickett L. J. Wadhams, and Woodcock, C. M. 1994. Methyl salicylate and (−)-(1R,5S)-myrtenal are plant-derived repellents for black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae). J. Chem. Ecol. 20:2847–2855.Google Scholar
  15. Hodges, R. J., Hall, D. R., Mbugua, J. N., and Likhayo, P. W. 1998. The responses of Prostephanus truncatus (Coleoptera: Bostrichidae) and Sitophilus zeamais (Coleoptera: Curculionidae) to pheromone and synthetic maize volatiles as lures in crevice or flight traps. Bull. Entomol. Res. 88:131–139.Google Scholar
  16. Isman, M. B. 1997. Neem and other botanical insecticides: Barriers to commercialization. Phytoparasitica 25:339–344.Google Scholar
  17. Isman, M. B. 2000. Plant essential oils for pest and disease management. Crop Prot. 19:603–608.Google Scholar
  18. Iwu, M. M. 1993. Handbook of African Medicinal Plants, CRC Press, Boca Raton, FL. 57 p.Google Scholar
  19. James G. 2003. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: Methyl salicylate and the green lacewing, Chrysopa nigricornis J. Chem. Ecol. 29:1601-1609.Google Scholar
  20. Jayasekara, T. K., Belmain, S. R., Stevenson, P. C., and Hall, D. R. 2003. Securidaca longepedunculata as a control for stored product insect pests, pp. 596–599, in P. F. Credland, D. M. Armitage, C. H. Bell, P. M Cogan, and E. Highley (eds.). Advances in Stored Product Protection, CAB International, Wallingford, UK.Google Scholar
  21. Jayasekara, T. K., Belmain, S. R., Stevenson, P. C., Hall, D. R., and Farman, D. 2002. Identification of methyl salicylate as the principal volatile component in the methanol extract of root bark of Securidaca longepedunculata Fers. J. Mass Spectrom. 37:577–580.Google Scholar
  22. Lee, B. H., W. S. Choi, S. E. Lee, B. S. Park, 2001. Fumigant toxicity of essential oils and their constituent compounds towards the rice weevil, Sitophilus oryzae (L.). Crop Prot.20:317–320Google Scholar
  23. Meiller, T. F., J. I. Kelley M. A. Jabra-rizk, L. G. Depaola A. A. M. Baqui A., and W. Falkler A. 2001. In vitro studies of the efficacy of antimicrobials against fungi. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 91:663–670.Google Scholar
  24. Ninkovic, V., E. Ahmed, R. Glinwood, J. Pettersson, 2003. Effects of two types of semiochemical on population development of the bird cherry oat aphid Rhopalosiphum padi in a barley crop. Agric. Forest Entomol. 5:27–33.Google Scholar
  25. Oliver-Bever, B. 1986. Medicinal Plants in Tropical West Africa. Cambridge University Press, Cambridge, UK. 108 p.Google Scholar
  26. Ozawa, R., G. Arimura J. Takabayashi, T. Shimoda T. Nishioka 2000. Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol. 41: 391–398.Google Scholar
  27. Papandreou, V., Magiatis, P., Chinou, I., Kalpoutzakis, E., Skaltsounis, A. L., and Tsarbopoulos, A. 2002. Volatiles with microbial activity from the roots of Greek Paeonia taxa. J. Ethnopharmacol. 81:101–104.Google Scholar
  28. Phillips, T. W., Liang, X. L., Burkholder, W. E., Phillips, J. J., and Tran, H. Q. 1993. Behavioral responses to food volatiles by two species of stored-product Coleoptera, Sitophilus oryzae (Curculionidae) and Tribolium castaneum (Tenebrionidae). J. Chem. Ecol. 19:723–734.Google Scholar
  29. Pike, V., Smith, J. L., White, R. D., and Hall, D. R. 1994. Studies of responses of stored-products pests, Prostephanus truncatus (Horn) and Sitophilus zeamais Motsch., to food volatiles, pp. 566–569, in E. Highley, E. J. Wright, H. J. Banks, and B. R. Champ (eds.). Proceedings of the 6th International Working Conference on Stored-Product Protection, CAB International, Wallingford, UK.Google Scholar
  30. Rajendran, S. 2000. Sheeted bag-stack fumigation with phosphine. Pest. Outlook 11:92–93.Google Scholar
  31. Rajendran, S. and Gunasekaran, N. 2002. The response of phosphine-resistant lesser grain borer Rhyzopertha dominica and rice weevil Sitophilus oryzae in mixed-age cultures to varying concentrations of phosphine. Pest. Manag. Sci. 58:277–281.Google Scholar
  32. Reed, C. and H. Pan D. 2000. Loss of phosphine from unsealed bins of wheat at six combinations of grain temperature and grain moisture content. J. Stored Prod. Res. 36:263–279.Google Scholar
  33. Shaaya, E., M. Kostjukovski, J. Eilberg C Sukprakarn. 1997. Plant oils as fumigants and contact insecticides for the control of stored-product insects. J. Stored Prod. Res. 33:7–15.Google Scholar
  34. Shaaya, E., Ravid, U., Paster, N., Juven, B., Zisman, U., and Pissarev, V. 1991. Fumigant toxicity of essential oils against four major stored-product insects. J. Chem. Ecol. 17:499–504.Google Scholar
  35. Shimoda, T., Ozawa, R., Arimura, G., Takabayashi, J., and Nishioka, T. 2002. Olfactory responses of two specialist insect predators of spider mites toward plant volatiles from lima bean leaves induced by jasmonic acid and/or methyl salicylate. Appl. Entomol. Zool. 37:535–541.Google Scholar
  36. Wees, S. C. M., vanSwart, E. A. M. dePelt, J. A. van Loon, L. C van., Pieterse, C. M. J. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 97:8711–8716.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Thamara K. Jayasekara
    • 1
  • Philip C. Stevenson
    • 1
    • 2
  • David R. Hall
    • 1
  • Steven R. Belmain
    • 1
    Email author
  1. 1.Natural Resources InstituteUniversity of GreenwichKentUnited Kingdom
  2. 2.Royal Botanic GardensKew, Richmond, SurreyUnited Kingdom

Personalised recommendations