Advertisement

Journal of Chemical Ecology

, Volume 31, Issue 2, pp 287–302 | Cite as

Effects of Quantitative Variation in Allelochemicals in Plantago lanceolata on Development of a Generalist and a Specialist Herbivore and their Endoparasitoids

  • Jeffrey A. Harvey
  • Saskya Van Nouhuys
  • Arjen Biere
Article

Abstract

Studies in crop species show that the effect of plant allelochemicals is not necessarily restricted to herbivores, but can extend to (positive as well as negative) effects on performance at higher trophic levels, including the predators and parasitoids of herbivores. We examined how quantitative variation in allelochemicals (iridoid glycosides) in ribwort plantain, Plantago lanceolata, affects the development of a specialist and a generalist herbivore and their respective specialist and generalist endoparasitoids. Plants were grown from two selection lines that differed ca. 5-fold in the concentration of leaf iridoid glycosides. Development time of the specialist herbivore, Melitaea cinxia, and its solitary endoparasitoid, Hyposoter horticola, proceeded most rapidly when reared on the high iridoid line, whereas pupal mass in M. cinxia and adult mass in H. horticola were unaffected by plant line. Cotesia melitaearum, a gregarious endoparasitoid of M. cinxia, performed equally well on hosts feeding on the two lines of P. lanceolata. In contrast, the pupal mass of the generalist herbivore, Spodoptera exigua, and the emerging adult mass of its solitary endoparasitoid, C. marginiventris, were significantly lower when reared on the high line, whereas development time was unaffected. The results are discussed with regards to (1) differences between specialist and generalist herbivores and their natural enemies to quantitative variation in plant secondary chemistry, and (2) potentially differing selection pressures on plant defense.

Keywords

Chemical defense iridoid glycosides Melitaea cinxia multitrophic interactions Plantago lanceolata Spodoptera exigua 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, L. S., Schmitt, J., and Bowers, M. D. 1995. Genetic variation in defensive chemistry in Plantago lanceolata (Plantaginaceae) and its effect on the specialist herbivore Junonia coenia (Nymphalidae). Oecologia 101:75–85.Google Scholar
  2. Barbosa, P., Gross, P., and Kemper, J. 1991. Influence of plant allelochemicals on the tobacco hornworm and its parasitoid, Cotesia congregata. Ecology 72:1567–1575.Google Scholar
  3. Barbosa, P., J. A. Saunders, J. Kemper, R. Trumble, J. Olechno, P. Martinat 1986. Plant allelochemicals and insect parasitoids: Effects of nicotine on Cotesia congregata (Say) (Hymenoptera: Braconidae) and Hyposoter annulipes (Cressen) (Hymenoptera: Ichmonidae). J. Chem. Ecol. 12:1319–1328.Google Scholar
  4. Biere, A., Marak, H. B., and van Damme, J. M. M. 2004. Plant chemical defense against herbivores and pathogens: Generalized defense or trade-offs? Oecologia 140:430–441.Google Scholar
  5. Bottrell, D. G., Barbosa, P., and Gould, F. 1998. Manipulating natural enemies by plant variety selection and modification: A realistic strategy? Annu. Rev. Entomol. 43:347–367.Google Scholar
  6. Bowers, M. D. 1991. Iridoid glycosides, pp. 297–325, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interaction with Plant Secondary Metabolites, 2nd edn. Academic Press, Orlando.Google Scholar
  7. Bowers, M. D. 2003. Hostplant suitability and defensive chemistry of the Catalpa sphinx, Ceratomia catalpae. J. Chem. Ecol. 29:2359–2367.Google Scholar
  8. Bowers, M. D. and Collinge, S. K. 1992. Fate of iridoid glycosides in different life stages of the buckeye, Junonia coenia (Lepidoptera, Nymphalidae). J. Chem. Ecol. 18:817–831.Google Scholar
  9. Bowers, M. D. and Puttick, G. M. 1988. Response of generalist and specialist insects to qualitative allelochemical variation. J. Chem. Ecol. 14:319–334.Google Scholar
  10. Bowers, M. D. and Stamp, N. E. 1993. Effects of plant age, genotype, and herbivory on Plantago performance and chemistry. Ecology 74:1778–1791.Google Scholar
  11. Camara, M. D. 1997. Physiological mechanisms underlying the costs of chemical defence in Junonia coenia Hubner (Nymphalidae): A gravimetric and quantitative genetic analysis. Evol. Ecol. 11:451–469.Google Scholar
  12. Campbell, B. C. and Duffey, S. S. 1979. Tomatine and parasitic wasps: Potential incompatibility of plant antibiosis with biological control. Science 205:700–702.Google Scholar
  13. Cortesero, A. M., Stapel, J. O., and Lewis, W. J. 2000. Understanding and manipulating plant attributes to enhance biological control. Biol. Control 17:35–49.Google Scholar
  14. Darrow, K. and Bowers, M. D. 1999. Effects of herbivore damage and nutrient level on induction of iridoid glycosides in Plantago lanceolata. J. Chem. Ecol. 25:1427–1440.Google Scholar
  15. Duffey, S. S., Bloem, K. A., and Campbell, B. C. 1986. Consequences of sequestration of plant natural products in plant–insect–parasitoid interactions, pp. 31–60, in D. J. Boethel and R. D. Eikenbary (eds.). Interactions of Plant Resistance and Parasitoids and Predators of Insects. Horwood, Chichester, UK.Google Scholar
  16. Greenberg, S. M., Sappington, T. W., Legaspi, B. C., Liu, T. X., and Setamou, M. 2001. Feeding and life history of Spodoptera exigua (Lepidoptera: Noctuidae) on different host plants. Ann. Entomol. Soc. Am. 94:566–575.Google Scholar
  17. Gunasena, G. H., Vinson, S. B., and Williams, H. J. 1990. Effects of nicotine on growth, development, and survival of the tobacco budworm (Lepidoptera, Noctuidae) and the parasitoid Campoletis sonorensis (Hymenoptera, Ichneumonidae). J. Econ. Entomol. 83:1777-1782.Google Scholar
  18. Hare, J D. 1992. Effects of plant variation on herbivore–natural enemy interactions., pp. 278–298, in R. S. Fritz and E. L. Simms (eds.). Plant Resistance to Herbivores and Pathogens: Ecology, Evolution and Genetics. University of Chicago press, Chicago, IL.Google Scholar
  19. Hare, J. D. 2002. Plant genetic variation in tritrophic interactions, pp. 8–43, in T. Tscharntke and B. A. Hawkins (eds.). Multitrophic Level Interactions. Cambridge University Press, Cambridge, UK.Google Scholar
  20. Harvey, J. A. and Strand, M. R. 2002. The developmental strategies of endoparasitoid wasps vary with host feeding ecology. Ecology 83:2439–2451.Google Scholar
  21. Harvey, J. A., van Dam, N. M., and Gols, R. 2003. Interactions over four trophic levels: Foodplant quality affects development of a hyperparasitoid as mediated through a herbivore and its primary parasitoid. J. Anim. Ecol. 72:520–531.Google Scholar
  22. Havill, N. P. and Raffa, K. F. 2000. Compound effects of induced plant responses on insect herbivores and parasitoids: Implications for tritrophic interactions. Ecol. Entomol. 25:171-179.Google Scholar
  23. Jensen, S. R. 1991. Plant iridoids, their biosynthesis and distribution in angiosperms, pp. 133–158, in J. B. Harborne and F. A. Tomas-Barberan (eds.). Ecological Chemistry and Biochemistry of Plant Terpenoids. Clarendon Press, Oxford, UK.Google Scholar
  24. Karban, R. and Baldwin, I. T. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago, IL.Google Scholar
  25. Kuussaari, M., van Nouhuys, S., Hellmann, J. J., and Singer, M. C. 2004. Checkerspot butterfly larval biology, pp. 138–160, in P. R. Ehrlich and I. Hanski (eds.). On the Wings of Checkerspots: A Model System for Population Biology. Oxford University Press, Oxford, UK.Google Scholar
  26. Lei, G. C., Vikberg, V., Nieminen, M., and Kuussaari, M. 1997. The parasitoid complex attacking Finnish populations of the Glanville fritillary Melitaea cinxia (Lep: Nymphalidae), an endangered butterfly. J. Nat. Hist. 31:635–648.Google Scholar
  27. Mallampalli, N., Barbosa, P., and Weinges, K. 1996. Effects of condensed tannins and catalpol on growth and development of Compsilura concinnata (Diptera: Tachinidae) reared in gypsy moth (Lepidoptera: Lymantriidae). J. Entomol. Sci. 31:289–300.Google Scholar
  28. Marak, H. B., Biere, A., and van Damme, J. M. M. 2000. Direct and correlated responses to selection on iridoid glycosides in Plantago lanceolata L. J. Evol. Biol. 13:985-996.Google Scholar
  29. Marak, H. B., A. Biere, and van Damme, J. M. M. 2002a. Systemic, genotype-specific induction of two herbivore-deterrent iridoid glycosides in Plantago lanceolata L. in response to fungal infection by Diaporthe adunca (Rob.) niessel. J. Chem. Ecol. 28:2429–2448.Google Scholar
  30. Marak, H. B., A. Biere, and van Damme, J. M. M. 2002b. Two herbivore-deterrent iridoid glycosides reduce the in-vitro growth of a specialist but not of a generalist pathogenic fungus of Plantago lanceolata L. Chemoecology 12:185–192.Google Scholar
  31. Marak, H. B., A. Biere, and van Damme, J. M. M. 2003. Fitness costs of chemical defense in Plantago lanceolata L: Effects of nutrient and competition stress. Evolution 57:2519–2530.Google Scholar
  32. Nieminen, M., Suomi, J., van Nouhuys, S., Sauri, P., and Riekkola, M. L. 2003. Effect of iridoid glycoside content on oviposition host plant choice and parasitism in a specialist herbivore. J. Chem. Ecol. 29:823–844.Google Scholar
  33. Nishida, R. 2002. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 47:57–92.Google Scholar
  34. Novozamsky, I., Houba, V. J. G., van Eck, R., and van Vark, W. 1983. A novel digestion technique for multi-element plant analysis. Comm. Soil Sci. Plant Analysis 14:239–249.Google Scholar
  35. Pereyra, P. C. and Bowers, M. D. 1988. Iridoid glycosides as oviposition stimulants for the buckeye butterfly, Junonia coenia (Nymphalidae). J. Chem. Ecol. 14:917–928.Google Scholar
  36. Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., and Weis, A. E. 1980. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11:41–65.Google Scholar
  37. Puttick, G. M. and Bowers, M. D. 1988. Effect of qualitative and quantitative variation in allelochemicals on a generalist insect—iridoid glycosides and the southern armyworm. J. Chem. Ecol. 14:335–351.Google Scholar
  38. Quicke, P. L. J. 1997. Parasitic Wasps. Chapman & Hall, London.Google Scholar
  39. Rimpler, H. 1991. Sequestration of iridoids by insects, pp. 314–330, in J. B. Harborne and F. A. Tomas-Barberan (eds.). Ecological Chemistry and Biochemistry of Plant Terpenoids. Clarendon Press, Oxford, UK.Google Scholar
  40. Suomi, J., Sirén, H., Wiedmer, S. K., and Riekkola, M. L. 2001. Isolation of aucubin and catalpol from Melitaea cinxia larvae and quantification by micellar electrokinetic capillary chromatography. Anal. Chim. Acta 429:91–99.Google Scholar
  41. Sznajder, B. and Harvey, J. A. 2003. Second and third trophic level effects of differences in plant species reflect dietary specialisation of herbivores and their endoparasitoids. Entomol. Exp. Appl. 109:73–82.Google Scholar
  42. Turlings, T. C. J. and Benrey, B. 1998. Effects of plant metabolites on the behavior and development of parasitic wasps. Ecoscience 5:321–333.Google Scholar
  43. van Nouhuys, S. and Hanski, I. 2004. Natural enemies of checkerspot butterflies, pp. 161–180, in P. R. Ehrlich and I. Hanski (eds.). On the Wings of Checkerspots: A Model System for Population Biology. Oxford University Press, Oxford, UK.Google Scholar
  44. Vickerman, D. B. and Trumble, J. T. 1999. Feeding preferences of Spodoptera exigua in response to form and concentration of selenium. Arch. Insect Biochem. Physiol. 42:64–73.Google Scholar
  45. Wahlberg, N. 2001. The phylogenetics and biochemistry of host-plant specialization in Melitaeine butterflies (Lepidoptera : Nymphalidae). Evolution 55:522–537.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Jeffrey A. Harvey
    • 1
  • Saskya Van Nouhuys
    • 2
    • 3
  • Arjen Biere
    • 4
  1. 1.Department of Multitrophic InteractionsNetherlands Institute of Ecology NIOO-KNAWThe Netherlands
  2. 2.Department of Ecology and Evolutionary BiologyCornell University Corson HallIthacaUSA
  3. 3.Metapopulation Research Group, Department of Ecology and SystematicsUniversity of HelsinkiHelsinkiFinland
  4. 4.Department of Plant Population BiologyNetherlands Institute of Ecology NIOO-KNAWHeterenThe Netherlands

Personalised recommendations