Journal of Chemical Ecology

, Volume 31, Issue 2, pp 247–265 | Cite as

Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris)

  • Jacob N. Barney
  • Anthony G. Hay
  • Leslie A. Weston
Article

Abstract

Several volatile allelochemicals were identified and characterized from fresh leaf tissue of three distinct populations of the invasive perennial weed, mugwort (Artemisia vulgaris). A unique bioassay was used to demonstrate the release of volatile allelochemicals from leaf tissues. Leaf volatiles were trapped and analyzed via gas chromatography coupled with mass spectrometry. Some of the components identified were terpenes, including camphor, eucalyptol, α-pinene, and β-pinene. Those commercially available were tested individually to determine their phytotoxicity. Concentrations of detectable volatiles differed in both absolute and relative proportions among the mugwort populations. The three mugwort populations consisted of a taller, highly branched population (ITH-1); a shorter, lesser-branched population (ITH-2) (both grown from rhizome fragments from managed landscapes); and a population grown from seed with lobed leaves (VT). Considerable interspecific variation existed in leaf morphology and leaf surface chemistry. Bioassays revealed that none of the individual monoterpenes could account for the observed phytotoxicity imparted by total leaf volatiles, suggesting a synergistic effect or activity of a component not tested. Despite inability to detect a single dominant phytotoxic compound, decreases in total terpene concentration with increase in leaf age correlated with decreases in phytotoxicity. The presence of bioactive terpenoids in leaf surface chemistry of younger mugwort tissue suggests a potential role for terpenoids in mugwort establishment and proliferation in introduced habitats.

Keywords

Artemisia vulgaris mugwort allelopathy monoterpenes volatiles invasive weed volatile bioassay glands 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, D., Braguini, W. L., Kelmer-Bracht, A. M., and Ishii-Iwamoto, E. L. 2000. Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J. Chem. Ecol. 26:611–624.Google Scholar
  2. Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M., and Vivanco, J. M. 2003. Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science 301:1377-1380.CrossRefPubMedGoogle Scholar
  3. Banthorpe, D. V. and Brown, G. D. 1989. Two unexpected coumarin derivatives from tissue cultures of compositae species. Phytochemistry28:3003–3007.Google Scholar
  4. Barney, J. N. 2003. Characterization of allelopathic and invasive potential of mugwort (Artemisia vulgaris L.). Masters Thesis, Cornell University.Google Scholar
  5. Barney, J. N. and DiTommaso, A. 2003. The biology of Canadian weeds. 118. Artemisia vulgaris L. Can. J. Plant Sci. 83:205–215.Google Scholar
  6. Bing, A. 1983. Problems in mugwort control in lawns. Proc. Northeast Weed Sci. Soc. 37:376.Google Scholar
  7. Callaway, R. M. and Aschehoug, E. T. 2000. Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science 290:521–523.CrossRefPubMedGoogle Scholar
  8. Charlwood, B. V. and Charlwood, K. A. 1991. Monoterpenoids, p. 565, in B. V. Charlwood and D. V. Banthorpe (eds.). Terpenoids. Academic Press, New York, NY.Google Scholar
  9. del Amo, S. and Anaya, A. L. 1978. Effect of some sesquiterpene lactones on the growth of certain secondary tropical species. J. Chem. Ecol. 4:305–313.Google Scholar
  10. del Moral, R. and Muller, C. H. 1970. The allelopathic effects if Eucalyptus camaldulensis. Am. Midl. Nat. 83:254–282.Google Scholar
  11. Duke, S. O., Vaughn, K. C., Croom, E. M., and Elshohly, H. N. 1987. Artemisinin, a constituent of annual wormwood (Artemisia annua) is a selective phytotoxin. Weed Sci. 35:499–505.Google Scholar
  12. Dung, N. X., Nam, V. V., Huong, H. T., and Leclerecq, P. A. 1992. Chemical composition of the essential oil of Artemisia vulgaris L. var. indica Maxim. from Vietnam. J. Essent. Oil Res. 4:433–434.Google Scholar
  13. Fajer, E. D., Bowers, M. D., and Bazzaz, F. A. 1992. The effect of nutrients and enriched CO2 environments on production of carbon-based allelochemicals in Plantago: A test of the carbon/nutrient balance hypothesis. Am. Nat. 140:707–723.Google Scholar
  14. Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt, C. N., Lamb, B., Liu, S., Trainer, M. H. W., and Zimmerman, P. 1992. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochem. Cycles6:389–430.Google Scholar
  15. Foy, C. L. 2001. Effect of selected herbicide-adjuvant combinations on mugwort (Artemisia vulgaris). Proc. Northeast Weed Sci. Soc. 55:109.Google Scholar
  16. Fuerst, E. P. and Putnam, A. R. 1983. Separating the competitive and allelopathic components of interference: Theoretical principles. J. Chem. Ecol. 9:937–944.Google Scholar
  17. Funke, G. L. 1943. The influence of Artemisia absinthiumon neighboring plants. Blumea 5:281–293.Google Scholar
  18. Gershenzon, J., Mcconkey, M. E., and Croteau, R. B. 2000. Regulation of monoterpene accumulation in leaves of peppermint. Plant Phys. 122:205–213.Google Scholar
  19. Guenther, A., Greenberg, J., Harley, P., Helmig, D., Klinger, L., Vierling, L., Zimmerman, P., and Geron, C. 1996. Leaf, branch, stand and landscape scale measurements of volatile organic compound fluxes from U.S. woodlands. Tree Physiol. 16:17–24.Google Scholar
  20. Hale, M. 1982. Allelopathic potential of Artemisia vulgaris rhizomes. Plant Physiol.69 (Supplement 126).Google Scholar
  21. Halligan, J. P. 1975. Toxic terpenes from Artemisia californica. Ecology 56:999–1003.Google Scholar
  22. Hayward, S., Muncey, R. J., James, A. E., Halsall, C. J., and Hewitt, C. N. 2001. Monoterpene emissions from soil in a Sitka spruce forest. Atmos. Environ. 35:4081–4087.Google Scholar
  23. Henderson, J. C. and Weller, S. C. 1985. Biology and control of Artemisia vulgaris. Proc. North Central Weed Control Conf. 40:100–101.Google Scholar
  24. Hierro, J. L. and Callaway, R. M. 2003. Allelopathy and exotic plant invasion. Plant Soil 256:29–39.CrossRefGoogle Scholar
  25. Holm, L., Doll, J., Holm, E., Pancho, J., and Herberger, J. 1997. World Weeds: Natural Histories and Distribution. John Wiley and Sons, New York, NY.Google Scholar
  26. Inderjit and Foy, C. 1999. Nature of the interference mechanism of mugwort (Artemisia vulgaris). Weed Technol. 13:176–182.Google Scholar
  27. Inderjit, Kauer, M., and Foy, C. 2001. On the significance of field studies in allelopathy. Weed Technol. 15:702–797.Google Scholar
  28. Keene, R. M. and Crawley, M. J. 2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17:164–170.Google Scholar
  29. Kim, Y. S. and Kil, B. S. 1989. Identification and growth inhibition of phytotoxic substances from tomato plant. Korean J. Bot. 32:41–49.Google Scholar
  30. Klarich, D. and Weaver, T. 1973. Effects of vapors from Artemisia tridentata Nutt. on seed germination. Proc. Montana Acad. Sci. 33:31–36.Google Scholar
  31. Kohli, R. K. and Singh, D. 1991. Allelopathic impacts of volatile components from Eucalyptus on crop plants. Biol. Plant 33:475–483.Google Scholar
  32. LeFevre, C. W. 1964. A light activated growth inhibitor from Artemisia vulgaris. Plant Physiol. 39 (Supplement S).Google Scholar
  33. Lerdau, M., Matson, P., Fall, R., and Monson, R. 1995. Ecological controls over monoterpene emissions from Douglas-fir (Pseudotsuga menziesii). Ecology 76:2640–2647.Google Scholar
  34. Lockwood, J. L., Simberloff, D., McKinney, M. L., and von Holle, B. 2001. How many, and which, plants will invade natural areas? Biol. Invest. 3:1–8.Google Scholar
  35. Loreto, F., Ciccioli, P., Cecinato, A., Brancaleoni, E., Frattoni, M., and Dtricoli, D. 1996. Influence of environmental factors and air composition on the emission of a-pinene from Quercus ilex leaves. Plant Physiol. 110:267–275.Google Scholar
  36. Lydon, J., Teasdale, J. R., and Chen, P. K. 1997. Allelopathic activity of annual wormwood (Artemisia annua) and the role of artemisinin. Weed Sci. 45:807–811.Google Scholar
  37. McCahon, C. B., Kelsey, R. G., Sheridan, P. P., and Shafizadeh, F. 1973. Physiological effects of compounds extracted from sagebrush. Bull. Torrey Bot. Club 100:23–28.Google Scholar
  38. McConkey, M. E., Gershenzon, J., and Croteau, R. B. 2000. Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint. Plant Physiol. 122:215–223.Google Scholar
  39. Melkania, N. P., Singh, J. S., and Bisht, K. K. S. 1982. Allelopathic potential of Artemisia vulgaris L. and Pinus roxburghii Sargent: A bioassay study. Proc. Indian Nat. Sci. Acad. B 48:685–688.Google Scholar
  40. Milhau, G., Valentin, A., Benoit, F., Mallié, M., Bastide, J., Péllissier, Y., and Bessiére, J. 1997. In vitro antimalarial activity of eight essential oils. J. Essent. Oil Res. 9:329–333.Google Scholar
  41. Misra, L. N. and Singh, S. P. 1986. α-Thujone, the major component of the essential oil from Artemisia vulgaris growing wild in Nilgiri Hills. J. Nat. Prod. 49:941.Google Scholar
  42. Mitchell, C. G. and Power, A. G. 2003. Release of invasive plants from fungal and viral pathogens. Nature 421:625–627.CrossRefPubMedGoogle Scholar
  43. Muller, C. H. 1965. Inhibitory terpenes volatilized from Salvia shrubs. Bull. Torrey Bot. Club 92:38–45.Google Scholar
  44. Muller, C. H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torrey Bot. Club 93:332–351.Google Scholar
  45. Muller, C. H., Muller, W. H., and Haines, B. L. 1964. Volatile growth inhibitors produced by aromatic shrubs. Science 143:471–473.Google Scholar
  46. Neal, J. C. and Adkins, C. R. 2001. Comparison of glyphosate and clopyralid for mugwort (Artemisia vulgaris) control in field-grown nursery crops. Proc. SNA 46:420–421.Google Scholar
  47. Penuelas, J., Ribas-Carbo, M., and Giles, L. 1996. Effects of allelochemicals on plant respiration and oxygen isotope fractionation by the alternative oxidase. J. Chem. Ecol. 22:801–805.Google Scholar
  48. Pino, J. A., Rosado, A., and Fuentes, V. 1999. Composition of the essential oil of Artemisia vulgaris L. herb from Cuba. J. Essent. Oil Res. 11:477–478.Google Scholar
  49. Qasem, J. R. and Foy, C. L. 2001. Weed allelopathy, its ecological impacts and future prospects: A review. J. Crop Prod. 4:43–119.Google Scholar
  50. Ridenour, W. M. and Callaway, R. M. 2001. The relative importance of allelopathy in interference: The effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450.CrossRefGoogle Scholar
  51. Rohloff, J. 1999. Monoterpene composition of essential oil from peppermint (Mentha × piperita L.) with regard to leaf position using solid-phase microextraction and gas chromatography/mass spectrometry analysis. J. Agric. Food Chem. 47:3782–3786.Google Scholar
  52. Sax, D. F., Gaines, S. D., and Brown, J. H. 2002. Species invasions exceed extinctions on islands worldwide: A comparative study of plants and birds. Am. Nat. 160:766–783.Google Scholar
  53. Singh, H. P., Batish, D. R., and Kohli, R. K. 2001. Allelopathy in agroecosystems: An overview. J. Crop Prod. 4:1–41.Google Scholar
  54. Turner, C. E. 1988. Ecology of invasions by weeds, pp. 354, in M. Liebman (ed.). Weed Management and Agroecosystems: Ecological Approaches. CRC Press, Inc., Boca Raton, FL.Google Scholar
  55. Wardle, D. A., Nilsson, M.-C., Gallet, C., and Zackrisson, O. 1998. An ecosystem-level perspective of allelopathy. Biol. Rev. 73:305–319.Google Scholar
  56. Weaver, T. and Klarich, D. 1976. Toxic effects of volatile exudates from Artemisia tridentata Nutt. on soil microbes. Proc. Montana Acad. Sci. 36:80–85.Google Scholar
  57. Weaver, T. W. and Klarich, D. 1977. Allelopathic effects of volatile substances from Artemisia tridentata Nutt. Am. Midl. Nat. 97:508–512.Google Scholar
  58. Weidenhamer, J. D., Macias, F. A., Fischer, N. H., and Williamson, G. B. 1993. Just how insoluble are monoterpenes? J. Chem. Ecol. 19:1799–1807.Google Scholar
  59. Weston, L. A., Burke, B. A., and Putnam, A. R. 1987. Isolation, characterization and activity of phytotoxic compounds from quackgrass (Agropyron repens (L.) Beauv.). Weed Sci. 13:403–421.Google Scholar
  60. Whittaker, R. H. and Feeny, P. P. 1971. Allelochemicals: Chemical interactions between species. Science 171:757–770.PubMedGoogle Scholar
  61. Williamson, M. 1996. Biological Invasions. Chapman & Hall, London.Google Scholar
  62. Williamson, M. and Fitter, A. 1996. The characters of successful invaders. Biol. Cons. 78:163–170.Google Scholar
  63. Yun, K. W. and Kil, B.-S. 1992. Assesment of allelopathic potential in Artemisia princeps var. orientalis residues. J. Chem. Ecol. 18:1933–1940.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Jacob N. Barney
    • 1
  • Anthony G. Hay
    • 2
  • Leslie A. Weston
    • 1
  1. 1.Department of HorticultureCornell UniversityIthacaUSA
  2. 2.Department of MicrobiologyCornell UniversityIthacaUSA

Personalised recommendations