Advertisement

Journal of Chemical Ecology

, Volume 31, Issue 1, pp 195–212 | Cite as

CONTENTS OF SOLUBLE, CELL-WALL-BOUND AND EXUDED PHLOROTANNINS IN THE BROWN ALGA Fucus vesiculosus, WITH IMPLICATIONS ON THEIR ECOLOGICAL FUNCTIONS

  • RIITTA KOIVIKKO
  • JYRKI LOPONEN
  • TUIJA HONKANEN
  • VEIJO JORMALAINEN
Article

Abstract

Phlorotannins are ubiquitous secondary metabolites in brown algae that are phenotypically plastic and suggested to have multiple ecological roles. Traditionally, phlorotannins have been quantified as total soluble phlorotannins. Here, we modify a quantification procedure to measure, for the first time, the amount of cell-wall-bound phlorotannins. We also optimize the quantification of soluble phlorotannins. We use these methods to study the responses of soluble and cell-wall-bound phlorotannin to nutrient enrichment in growing and nongrowing parts of the brown alga Fucus vesiculosus. We also examine the effects of nutrient shortage and herbivory on the rate of phlorotannin exudation. Concentrations of cell-wall-bound phlorotannins were much lower than concentrations of soluble phlorotannins; we also found that nutrient treatment over a period of 41 days affected only soluble phlorotannins. Concentrations of each phlorotannin type correlated positively between growing and nongrowing parts of individual seaweeds. However, within nongrowing thalli, soluble and cell-wall-bound phlorotannins were negatively correlated, whereas within growing thalli there was no correlation. Phlorotannins were exuded from the thallus in all treatments. Herbivory increased exudation, while a lack of nutrients had no effect on exudation. Because the amount of cell-wall-bound phlorotannins is much smaller than the amount of soluble phlorotannins, the major function of phlorotannins appears to be a secondary one.

Key Words

Phenolics phlorotannins plant defense Fucus vesiculosus brown alga cell-wall-bound exudation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appel, H. M. 1993. Phenolics in ecological interactions: The importance of oxidation. J. Chem. Ecol. 19:1521–1552.Google Scholar
  2. Arnold, T. M. and Targett, N. M. 1998. Quantifying in situ rates of phlorotannin synthesis and polymerization in marine brown algae. J. Chem. Ecol. 24:577–595.Google Scholar
  3. Arnold, T. M. and Targett, N. M. 2000. Evidence for metabolicturnover of polyphenolics in tropical brown algae. J. Chem. Ecol. 26:1393–1410.Google Scholar
  4. Arnold, T. M. and Targett, N. M. 2003. To grow and defend: lack of tradeoffs for brown algal phlorotannins. Oikos 100:406–408.Google Scholar
  5. Barton, A. F. M. 1983. Handbook of Solubility Parameters and other Cohesion Parameters, pp. 142–149. CRC Press, Boca Raton, Florida.Google Scholar
  6. Bryant, J. P., Chapin III, F. S., and Klein, D. R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368.Google Scholar
  7. Carlson, D. J. and Carlson, M. L. 1984. Reassessment of exudation by fucoid macroalgae. Limnol. Oceanogr. 29:1077–1087.Google Scholar
  8. Dicke, M. and vanLoon, J. J. A. 2000. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exp. Appl. 97:237–249.Google Scholar
  9. Dicke, M., Agrawal, A. A., and Bruin, J. 2003. Plants talk, but are they deaf? Trends Plant Sci. 8:403–405.Google Scholar
  10. Hagerman, A. E. 1988. Extraction of tannin from fresh and preserved leaves. J. Chem. Ecol. 14:453–461.Google Scholar
  11. Harborne, J. B., Baxter, H., and Moss, G. P. (eds.). 1999. Tannins, Chapter 45, pp. 570–581, Phytochemical Dictionary. A Handbook of Bioactive Compounds from Plants. Taylor & Francis, UK.Google Scholar
  12. Herms, D. A. and Mattson, W. J. 1992. The dilemma of plants: To grow or defend? Q. Rev. Biol. 67:283–335.Google Scholar
  13. van den Hoeck, C., Mann, D. G., and Jahns, H. M. 1995. Algae—An Introduction to Phycology. Cambridge University Press, Cambridge.Google Scholar
  14. Honkanen, T., Jormalainen, V., Hemmi, A., Mäkinen, A., and Heikkilä, N. 2002. Feeding and growth of the isopod Idotea baltica on the brown alga Fucus vesiculosus: Roles of inter-population and within-plant variation in plant quality. Ecoscience 9:332–338.Google Scholar
  15. Jennings, J. G. and Steinberg, P. D. 1994. In situ exudation of phlorotannins by the sublittoral kelp Ecklonia radiata. Mar. Biol. 121:349–354.Google Scholar
  16. Jennings, J. G. and Steinberg, P. D. 1997. Phlorotannins versus other factors affecting epiphyte abundance on the kelp Ecklonia radiata. Oecologia 109:461–473.Google Scholar
  17. Jormalainen, V., Honkanen, T., Koivikko, R., and Eränen, J. 2003. Induction of phlorotannin production in a brown alga: Defense or resource dynamics? Oikos 103:640–650.Google Scholar
  18. Jormalainen, V., Honkanen, T., Mäkinen, A., Hemmi, A., and Vesakoski, O. 2001. Why does herbivore sex matter? Sexual differences in utilization of Fucus vesiculosus by the isopod Idotea baltica. Oikos93:77–86.Google Scholar
  19. Karban, R. and Baldwin, I. T. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago, IL, USA.Google Scholar
  20. Keinänen, M. 1993. Comparison of methods for the extraction of flavonoids from birch leaves (Betula pendulaRoth.) carried out using high-performance liquid chromatography. J. Agric. Food Chem. 41:1986–1990.Google Scholar
  21. Lozovaya, V. V., Gorshkova, T. A., Yablokova, E. V., Rumyantseva, N. I., Valieva, A., Ulanov, A., and Widholm, J. M. 1999. Cold alkali can extract phenolic acids that are ether linked to cell wall components in dicotyledonous plants (buckwheat, soybean and flax). Phytochemistry 50:395–400.Google Scholar
  22. Lucas, P. W., Turner, I. M., Dominy, N. J., and Yamashita, N. 2000. Mechanical defences to herbivory. Ann. Bot. 86:913–920.Google Scholar
  23. Mabeu, S. and Kloareg, B. 1987. Isolation and analysis of the cell walls of brown algae: Fucus spiralis, F. ceranoides, F. vesiculosus, F. serratus, Bifurcaria bifurcata and Laminaria digitata. J. Exp. Bot. 38:1573–1580.Google Scholar
  24. Pavia, H., Cervin, G., Lindgren, A., and Åberg, P. 1997. Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 157:139–146.Google Scholar
  25. Pavia, H. and Toth, G. 2000a. Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology 81:3212–3225.Google Scholar
  26. Pavia, H. and Toth, G. B. 2000b. Influence of light and nitrogen on the phlorotannin content of the brown seaweeds Ascophyllum nodosum and Fucus vesiculosus. Hydrobiologia 440:299–305.Google Scholar
  27. Peckol, P., Krane, J. M., and Yates, J. L. 1996. Interactive effects of inducible defense and resource availability on phlorotannins in the North Atlantic brown alga Fucus vesiculosus. Mar. Ecol. Prog. Ser. 138:209–217.Google Scholar
  28. Peng, S., Scalbert, A., and Monties, B. 1991. Insoluble ellagitannins in Castanea sativa and Quercus petraea woods. Phytochemistry 30:775–778.CrossRefGoogle Scholar
  29. Porter, L. J. 1989. Condensed tannins, pp. 651–690, J. W. Rowe (ed.). Natural Products of Woody Plants I. Springer-Verlag, Berlin, Germany.Google Scholar
  30. Ragan, M. A. and Glombitza, K.-W. 1986. Phlorotannins, brown algal polyphenols, pp. 129–241, Round and Chapman (eds.). Progress in Phycological Research, Vol. 4. Biopress LTD.Google Scholar
  31. Ragan, M. A. and Jensen, A. 1979. Quantitative studies on brown algal phenols. III. Light-mediated exudation on polyphenols from Ascophyllum nodosum (L.) Le Jol. J. Exp. Mar. Biol. Ecol. 36:91–101.Google Scholar
  32. Rohr, G. E. 2002. Analysis of proanthocyanidins, pp. 60–97, S. Martens, D. Treutter, and G. Forkmann (eds.). Polyphenols 2000. Freising–Weihenstephan (Germany), Freising (September 10–15, 2000).Google Scholar
  33. Sabelis, M. W., van Baalen, M., Bakker, F. M., Bruin, J., Drukker, B., Egas, M., Janssen, A. R. M., Lesna, I. K., Pels, B., vanRijn, P. C. J., and Scutareanu, P. 1999. The evolution of direct and indirect plant defence against herbivorous arthropods, pp. 109–166, H. Olff, V. K. Brown, and R. H. Drent (eds.). Herbivores: Between Plants and Predators. Blackwell Science, Cambridge.Google Scholar
  34. Salminen, J.-P. 2003. Effects of sample drying and storage, and choice of extraction solvent and analysis methods on the yield of birch leaf hydrolysable tannins. J. Chem. Ecol. 29:1289–1305.Google Scholar
  35. Schoenwaelder, M. E. A. 2002. The occurrence and cellular significance of physodes in brown algae. Phycologia 41:125–139.Google Scholar
  36. Schoenwaelder, M. E. A. and Wiencke, C. 2000. Phenolic compounds in the embryo development of several northern hemisphere fucoids. Plant Biol. 2:24–33.Google Scholar
  37. Schoenwaelder, M. E. A. and Clayton, M. N. 1998. Secretion of phenolic substances into the zygote wall and cell plate in embryos of Hormosira and Acrocarpia (fucales, phaeophyceae). J. Phycol. 34:969–980.Google Scholar
  38. Sieburth, J. M. and Conover, J. T. 1965. Sargassum tannin, an antibiotic which retards fouling. Nature 208:52–53.Google Scholar
  39. Sieburth, J. M. and Jensen, A. 1969. Studies on algal substances in the sea. II. The formation of gelbstoff (humic material) by exudates of Phaeophyta. J. Exp. Mar. Biol. Ecol. 3:275–289.Google Scholar
  40. Steinberg, P. D. 1988. The effects of quantitative and qualitative variation in phenolic compounds on feeding in three species of marine invertebrate herbivores. J. Exp. Mar. Biol. Ecol. 120:221–382.Google Scholar
  41. Steinberg, P. D. 1995. Seasonal variation in the relationship between growth rate and phlorotannin production in the kelp Ecklonia radiata. Oecologia 102:169–173Google Scholar
  42. Stern, J. L., Hagerman, A. E., Steinberg, P. D., and Mason, P. K. 1996. Phlorotannin–protein interactions. J. Chem. Ecol. 22:1877–1899.Google Scholar
  43. Strack, D. 1997 Phenolic metabolism, pp. 387–416, P. M. Dey and J. B.Harborne (eds.). Plant Biochemistry. Academic Press, UK.Google Scholar
  44. Strack, D., Heileman, J., Mömken, M., and Wray,V. 1988. Cell wall-conjugated phenolics from coniferae leaves. Phytochemistry 27:3517–3521.Google Scholar
  45. Strack, D., Heileman, J., Wray, V., and Dirks, H.1989. Structures and accumulation patterns of soluble and insoluble phenolics from Norway spruce needles. Phytochemistry 28:2071–2078.Google Scholar
  46. Swanson, A. K. and Druehl, L. D. 2002. Induction, exudation and the UV protective role of kelp phlorotannins. Aquat. Bot. 73:241–253.Google Scholar
  47. Targett, N. M. and Arnold, T. M. 1998. Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J. Phycol. 34:195–205.Google Scholar
  48. Targett, N. M., Coen, L. D., Boettcher, A. A., and Tanner, C. E. 1992. Biogeographic comparisons of marine algal polyphenolics: Evidence against a latitudinal trend. Oecologia 89:464–470.Google Scholar
  49. Toth, G. and Pavia, H. 2000. Water-borne cues induce chemical defense in a marine alga (Ascophyllum nodosum). Proc. Natl Acad. Sci. USA 97:14418–14420.Google Scholar
  50. Van Alstyne, K. L., McCarthy III, J. J., Hustead, C. L., and Kearns, L. J. 1999. Phlorotannin allocation among tissues of northeastern pacific kelps and rockweeds. J. Phycol. 35:482–492.Google Scholar
  51. Van Beek, T. A. 2002. Chemical analysis of Ginkgo biloba leaves and extracts. J. Chromatogr. A 967:21–55.Google Scholar
  52. Van Den Hoeck, C., Mann, D. G., and Jahns, H. M. 1995. Algae- An Introduction to Phycology. Cambridge University Press, Cambridge.Google Scholar
  53. Viriot, C., Scalbert, A., Lapierre, C., and Moutounet, M. 1993. Ellagitannins and lignins in aging of spirits in oak barrels. J. Agric. Food Chem. 41:1872–1879.Google Scholar
  54. Wang, G. and Cole, R. B. 1997. Solution, gas-phase, and instrumental parameter influences on charge-state distributions in electrospray ionization mass spectrometry, pp. 137–174, R. B. Cole (ed.). Electrospray Ionization Mass Spectrometry. Fundamentals, Instrumentation, and Applications. John Wiley & Sons, Inc. USA.Google Scholar
  55. Waterman, P. G. and Mole, S. (eds.). 1994. Analysis of Phenolic Plant Metabolites. Blackwell Scientific, Oxford.Google Scholar
  56. Wikström, S. A. and Pavia, H. 2004. Chemical settlement inhibition versus postsettlement mortality as an explanation for differential fouling of two congeneric seaweeds. Oecologia 138:223–230.Google Scholar
  57. Yates, J. C. and Peckol, P. 1993. Effects of nutrient availability and herbivory onpolyphenolics in the seaweed Fucus vesiculosus. Ecology 74:1757–1766.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • RIITTA KOIVIKKO
    • 1
    • 2
  • JYRKI LOPONEN
    • 2
  • TUIJA HONKANEN
    • 1
  • VEIJO JORMALAINEN
    • 1
  1. 1.Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland
  2. 2.Laboratory of Environmental Chemistry, Department of ChemistryUniversity of TurkuTurkuFinland

Personalised recommendations