Advertisement

Journal of Chemical Ecology

, Volume 31, Issue 1, pp 15–28 | Cite as

EFFECT OF PBAN ON PHEROMONE PRODUCTION BY MATED Heliothis virescens AND Heliothis subflexa FEMALES

  • ASTRID T. GROOTEmail author
  • YONGLIANG FAN
  • CAVELL BROWNIE
  • RUSSELL A. JURENKA
  • FRED GOULD
  • COBY SCHAL
Article

Abstract

Mated female Heliothis virescens and H. subflexa were induced to produce sex pheromone during the photophase by injection of pheromone biosynthesis activating neuropeptide (PBAN). When injected with 1 pmol Hez-PBAN, the total amount of pheromone that could be extracted from glands of mated females during the photophase was similar to that extracted from virgin females in the scotophase. The PBAN-induced profile of pheromone components was compared between mated, PBAN-injected females and virgin females during spring and fall. Virgin females exhibited some differences in the relative composition of the pheromone blend between spring and fall, but no such temporal differences were detected in PBAN-injected, mated females. Because the temporal variation in pheromone blend composition was greater for virgin females than for PBAN-injected females, PBAN can be used to determine a female’s native pheromone phenotype. This procedure has the advantages that pheromone glands can be extracted during the photophase, from mated females that have already oviposited.

Key Words

Heliothisvirescens Heliothis subflexa sex pheromone PBAN temporal variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abernathy, R. L., Teal, P. E. A., Meredith, J. A., and Nachman, R. J. 1996. Induction of pheromone production in a moth by topical application of a pseudopeptide mimic of a pheromonotropic neuropeptide. Proc. Natl. Acad. Sci. USA 93:12621–12625.Google Scholar
  2. Arima, R., Takahara, K., Kadoshima, T., Numazaki, F., Ando, T., Uchiyama, M., Nagasawa, H., Kitamura, A., and Suzuki, A. 1991. Hormonal regulation of pheromone biosynthesis in the silkworm moth, Bombyx mori (Lepidoptera: Bombycidae). Appl. Entomol. Zool. 26:37–147.Google Scholar
  3. Bjostad, L. B. and Roelofs, W. L. 1983. Sex pheromone biosynthesis in Trichoplusia ni: key steps involve delta-11 desaturation and chain-shortening. Science 220:1387–1389.Google Scholar
  4. Boos, D. D. and Brownie, C. 1989. Bootstrap methods for testing homogeneity of variances. Technometrics 31:69–82.Google Scholar
  5. Butlin, R. 1995. Genetic variation in mating signals and responses, pp. 327–366, D. M. Lambert and H. G. Spencer (eds.). Speciation and the Recognition Concept: Theory and Application. Johns Hopkins Univ. Press, Baltimore, MD.Google Scholar
  6. Choi, M.-Y., Han, K. S., Boo, K. S., and Jurenka, R. A. 2002. Pheromone biosynthetic pathways in the moths Helicoverpa zea and Helicoverpa assaulta. Insect Biochem. Mol. Biol. 32:1353–1359.Google Scholar
  7. Conover, W. J., Johnson, M. E., and Johnson, M. M. 1981. A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23:351–361.Google Scholar
  8. Coyne, J. A. and Orr, H. A. 1998. The evolutionary genetics of speciation. Phil. Trans. R. Soc. London Series B: Biol. Sci. 353:287–305.Google Scholar
  9. Fabriàs, G., Marco, M.-P., and Camps, F. 1994. Effect of the pheromone biosynthesis activating neuropeptide on sex pheromone biosynthesis in Spodoptera littoralis isolated glands. Arch. Insect Biochem. Physiol. 27:77–87.Google Scholar
  10. Heath, R. R., Mclaughlin, J. R., Prosholt, F., and Teal, P. E. A. 1991. Periodicity of female sex pheromone titer and release in Heliothis subflexa and H. virescens (Lepidoptera: Noctuidae). Ann. Ent. Soc. Am. 84:182–189.Google Scholar
  11. Jurenka, R. A. 1996. Signal transduction in the stimulation of sex pheromone biosynthesis in moths. Arch. Insect Biochem. Physiol. 33:245–258.Google Scholar
  12. Klun, J. A., Plimmer, J. R., Bierl-Leonhardt, B. A., Sparks, A. N., Primiani, M., Chapman, O. L., Lee, G. H., and Lepone, G. 1980a. Sex pheromone chemistry of female corn earworm moth, Heliothis zea. J. Chem. Ecol. 6:165–175.Google Scholar
  13. Klun, J. A., Bierl-Leonhardt, B. A., Plimmer, J. R., Sparks, A. N., Primiani, M., Chapman, O. L., Lepone, G., and Lee, G. H. 1980b. Sex pheromone chemistry of the female tobacco budworm moth Heliothis virescens. J. Chem. Ecol. 6:177–183.Google Scholar
  14. Klun, J. A., Leonardt, B. A., Lopez, J. D., and Lachance, L. E. 1982. Female Heliothis subflexa (Lepidoptera, Noctuidae) sex pheromone — chemistry and congeneric comparisons. Environ. Entomol. 11:1084–1090.Google Scholar
  15. Kurtti, T. J. and Brooks, M. A. 1976. The dissociation of insect embryos for cell culture. In Vitro 12: 141–146.Google Scholar
  16. Laster, M. L. 1972. Interspecific hybridization of Heliothis virescens and H. subflexa. Environ. Entomol. 1:682–687.Google Scholar
  17. Linn, C. E. Jr. and Roelofs, W. L. 1995. Pheromone communication in moths and its role in the speciation process, pp. 263–300, D. M. Lambert and H. G. Spencer (eds.). Speciation and the Recognition Concept: Theory and Application. Johns Hopkins Univ. Press, Baltimore, MD.Google Scholar
  18. Löfstedt, C. 1990. Population variation and genetic control of pheromone communication systems in moths. Entomol. Exp. Appl. 54:199–218.Google Scholar
  19. Löfstedt, C. 1993. Moth pheromone genetics and evolution. Phil. Trans. R. Soc. London Series B: Biol. Sci. 340:167–177.Google Scholar
  20. Morse, D. and Meighen, E. 1986. Pheromone biosynthesis and role of functional groups in pheromone specificity. J. Chem. Ecol. 12:335–351.Google Scholar
  21. Ozawa, R. A., Ando, T., Nagasawa, H., Kataoka, H., and Suzuki, A. 1993. Reduction of the acyl group: the critical step in bombykol biosynthesis that is regulated in vitro by the neuropeptide hormone in the pheromone gland of Bombyx mori. Biosci. Biotech. Biochem. 57:2144–2147.Google Scholar
  22. Phelan, P.L. 1997. Evolution of mate signalling in moths: phylogenetic considerations and predictions from the asymmetric tracking hypothesis, pp. 240–256, J. Choe and B. Crespi (eds.). Evolution of Mating Systems in Insects and Arachnids. Cambridge University Press, Cambridge, UK.Google Scholar
  23. Pope, M. M., Gaston, L. K., and Baker, T. C. 1982. Composition, quantification, and periodicity of sex pheromone gland volatiles from individual Heliothis virescens females. J. Chem. Ecol. 8:1043–1055.Google Scholar
  24. Pope, M. M., Gaston, L. K., and Baker, T. C. 1984. Composition, quantification, and periodicity of sex pheromone volatiles from individual Heliothis zea females. J. Insect Physiol. 30:943–945.Google Scholar
  25. Prosholt, F. I. and Lachance, L. E. 1974. Analysis of sterility in hybrids from interspecific crosses between Heliothis virescens and H. subflexa. Ann. Entomol. Soc. Am. 67:445–449.Google Scholar
  26. Raina, A. K., Jaffe, H., Kempe, T. G., Keim, P., Blacher, R. W., Fales, H. M., Riley, C. T., Klun, J. A., Ridgway, R., and Hayes, D. K. 1989. Identification of a neuropeptide hormone that regulates pheromone production in female moths. Science 244:796–798.Google Scholar
  27. Rafaeli, A. 2002. Neuroendocrine control of pheromone biosynthesis in moths. Int. Rev. Cytol. 213: 49–91.Google Scholar
  28. Rafaeli, A. and Jurenka, R. A. 2003. PBAN regulation of pheromone biosynthesis in female moths, pp. 107–136, G. J. Blomquist and R. Vogt (eds.). Insect Pheromones – Biochemistry and Molecular Biology. Academic Press, New York, NY.Google Scholar
  29. Ramaswamy, S. B., Randle, S. A., and Ma, W. K. 1985. Field evaluation of the sex pheromone components of Heliothis virescens (Lepidoptera: Noctuidae) in cone traps. Environ. Entomol. 14:293–296.Google Scholar
  30. Roelofs, W. L. and Wolf, W. A. 1988. Pheromone biosynthesis in Lepidoptera. J. Chem. Ecol. 14:2019–2031.Google Scholar
  31. Roelofs, W. L., Hill, A. S., Cardé, R. T., and Baker, T. C. 1974. Two sex pheromone components of the tobacco budworm moth, Heliothis virescens. Life Sci. 14:1555–1562.Google Scholar
  32. Sas. 2002. The SAS System for Windows. Release 8.03. SAS Institute, Cary NC.Google Scholar
  33. Sheck, A. L. and Gould, F. 1993. The genetic basis of host range in Heliothis virescens: larval survival and growth. Entomol. Exp. Appl. 69:157–172.Google Scholar
  34. Sheck, A. L. and Gould, F. 1995. Genetic analysis of differences in oviposition preferences of Heliothis virescens and H. subflexa (Lepidoptera: Noctuidae). Environ. Entomol. 24:341–347.Google Scholar
  35. Sheck, A. L. and Gould, F. 1996. The genetic basis of differences in growth and behavior of specialist and generalist herbivore species: selection on hybrids of Heliothis virescens and Heliothis subflexa (Lepidoptera). Evolution 50:831–841.Google Scholar
  36. Teal, P. E. A. and Oostendorp, A. 1995a. Production of pheromone by hairpencil glands obtained from interspecific hybridization between Heliothis virescens and H. subflexa. J. Chem. Ecol. 21:59–67.Google Scholar
  37. Teal, P. E. A. and Oostendorp, A. 1995b. Effect of interspecific hybridization between Heliothis virescens and H. subflexa (Lepidoptera: Noctuida) on sex pheromone production by females. J. Insect Physiol. 41:519–525.Google Scholar
  38. Teal, P. E. A. and Tumlinson, J. H. 1987. The role of alcohols in pheromone biosynthesis by two noctuid moths that use acetate pheromone components. Arch. Insect Biochem. Physiol. 4:261–269.Google Scholar
  39. Teal, P. E. A. and Tumlinson, J. H. 1997. Effects of interspecific hybridization between Heliothis virescensand Heliothis subflexa on the sex pheromone communication system, pp. 535–547, R. T. Cardé and A. K. Minks (eds.). Insect Pheromone Research, New Directions. Chapman & Hall, New York, NY.Google Scholar
  40. Teal, P. E. A., Heath, R. R., Tumlinson, J. H., and Mclaughlin, J. R. 1981. Identification of sex pheromone of Heliothis subflexa (G.) (Lepidoptera: Noctuidae) and field trapping studies using different blends of components. J. Chem. Ecol. 7:1011–1022.Google Scholar
  41. Teal, P. E. A., Tumlinson, J. H., Mclaughlin, J. R., Heath, R., and Rush, R. A. 1984. ($Z)$-11-Hexadecen-1-ol: a behavioral modifying chemical present in the pheromone gland of female Heliothis zea (Lepidoptera: Noctuidae). Can. Entomol. 116:777–779.Google Scholar
  42. Teal, P. E. A., Tumlinson, J. H., and Heath, R. R. 1986. Chemical and behavioral analyses of volatile sex pheromone components released by calling Heliothis virescens (F.) females (Lepidoptera: Noctuidae). J. Chem. Ecol. 12:107–125.Google Scholar
  43. Teal, P. E. A., Tumlinson, J. H., and Oostendorp, A. 1989. Enzyme-catalyzed pheromone synthesis by Heliothis moths, pp. 332–343, J. R. Whitaker and P. E. Sonnet (eds.). Biocatalysis in Agricultural Biotechnology. American Chemical Society, Washington, D.C.Google Scholar
  44. Teal, P. E. A., Oostendorp, A., and Tumlinson, J. H. 1993. Induction of pheromone production in females of Heliothis virescens (F.) and H. subflexa (Gn.) (Lepidoptera: Noctuidae) during the photophase. Can. Entomol. 125:355–366.Google Scholar
  45. Tillman, J. A., Seybold, S. J., Jurenka, R. A., and Blomquist, G. J. 1999. Insect pheromones–an overview of biosynthesis and endocrine regulation. Insect Biochem. Mol. Biol. 29:481–514.Google Scholar
  46. Tumlinson, J. H., Hendricks, P. E., Mitchell, E. R., Doolittle, R. E., and Brennan, M. M. 1975. Isolation, identification and synthesis of the sex pheromone of the tobacco budworm . J. Chem. Ecol. 1:203–214.Google Scholar
  47. Tumlinson, J. H., Heath, R. R., and Teal, P. E. A. 1982. Analysis of chemical communication systems of Lepidoptera, pp. 1–25, B. A. Leonhardt and M. Beroza (eds.). Insect Pheromone Technology—Chemistry and Applications. American Chemical Society, Washington D.C.Google Scholar
  48. Vetter, R. S. and Baker, T. C. 1984. Behavioral responses of male Heliothis zea moths in sustained flight-tunnel to combinations of four compounds identified from female sex pheromone gland. J. Chem. Ecol. 10:193–202.Google Scholar
  49. Vickers, N. J. 2002. Defining a synthetic blend attractive to male Heliothis subflexa under wind tunnel conditions. J. Chem. Ecol. 28:1255–1267.Google Scholar
  50. Vickers, N. J., Christensen, T. A., Mustaparta, H., and Baker, T. C. 1991. Chemical communication in heliothine moths III. Flight behavior of male Helicoverpa zea and Heliothis virescens in response to varying ratios of intra- and interspecific sex pheromone components. J. Comp. Physiol. A 169:275–280.Google Scholar
  51. Wolf, W. A. and Roelofs, W. L. 1989. Enzymes involved in the biosynthesis of sex pheromones in moths, pp. 323–331, J. R. Whitaker and P. E. Sonnet (eds.). Biocatalysis in Agricultural Biotechnology. American Chemical Society, Washington, D.C.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • ASTRID T. GROOT
    • 1
    Email author
  • YONGLIANG FAN
    • 1
  • CAVELL BROWNIE
    • 2
  • RUSSELL A. JURENKA
    • 3
  • FRED GOULD
    • 1
  • COBY SCHAL
    • 1
  1. 1.Department of EntomologyW. M. Keck Center for Behavioral BiologyUSA
  2. 2.Department of StatisticsNorth Carolina State UniversityRaleighUSA
  3. 3.Department of EntomologyIowa State UniversityAmesUSA

Personalised recommendations