Analysis of a Reaction–Diffusion Cholera Model with Distinct Dispersal Rates in the Human Population

  • Jinliang WangEmail author
  • Jing Wang


In this paper, we investigate the long term behaviors of a reaction-diffusion cholera model in bounded spatial domain with zero-flux boundary condition. The parameters in the model involving space are typical space-dependent due to spatial heterogeneity. We consider the case that the dispersal rates of the susceptible and infected hosts are different, no diffusion term in the cholera equation and bilinear incidence infection mechanism. The existence of global solution, uniform boundedness of solution, asymptotic smoothness of semiflows and existence of global attractor are also addressed. We define the basic reproduction number \(\mathfrak {R}_0\) for the model for the disease transmission in spatially homogeneous environment and establish a threshold type result for the disease eradication or uniform persistence. Considering the cases that either the dispersal rate of the susceptible individuals or the dispersal rate of the infected individuals approaches zero, we investigate the asymptotical profiles of the endemic steady state. Our results suggest that: cholera can be eliminated by limiting the movement of the susceptible individuals, while limiting the mobility of the infected hosts, the infected individuals concentrate on certain points in some circumstances.


Spatial heterogeneity Asymptotic profile Basic reproduction number Reaction–diffusion cholera model 



The authors would like to thank the editor and the anonymous reviewer for his/her suggestions that have improved this paper. J.L. Wang was supported by National Natural Science Foundation of China (No. 11871179), Natural Science Foundation of Heilongjiang Province (No. LC2018002) and Heilongjiang Privincial Key Laboratory of the Theory and Computation of Complex Systems.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.


  1. 1.
    Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic reaction–diffusion model. Disc. Cont. Dyn. Syst. 21, 1–20 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Andrews, J.R., Basu, S.: Transmission dynamics and control of cholera in Haiti: an epidemic model. Lancet 377, 1248–1255 (2011)CrossRefGoogle Scholar
  3. 3.
    Brauer, F., Shuai, Z., van den Driessche, P.: Dynamics of an age-of-infection cholera model. Math. Biosci. Eng. 10, 1335–1349 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Codeço, C.T.: Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. 1, 1 (2001)CrossRefGoogle Scholar
  5. 5.
    Dwyer, G.: Density dependence and spatial structure in the dynamics of insect pathogens. Am. Nat. 97, 533–562 (2014)Google Scholar
  6. 6.
    Guo, Z., Wang, F.-B., Zou, X.: Threshold dynamics of an infective disease model with a fixed latent period and non-local infections. J. Math. Biol. 65, 1387–1410 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1989)Google Scholar
  8. 8.
    Hartley, D.M., Morris, J.G., Smith, D.L.: Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLOS Med. 3, 63–69 (2006)CrossRefGoogle Scholar
  9. 9.
    Li, H., Peng, R., Wang, F.: Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model. J. Differ. Equ. 262, 885–913 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lou, Y., Zhao, X.-Q.: A reaction–diffusion malaria model with incubation period in the vector population. J. Math. Bio. 62, 543–568 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Magal, P., Zhao, X.-Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM. J. Math. Anal. 37, 251–275 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Martin, R.H., Smith, H.L.: Abstract functional differential equtions and reaction–diffusion systems. Trans. Am. Math. Soc. 321, 1–44 (1990)Google Scholar
  13. 13.
    Mukandavire, Z., Liao, S., Wang, J., Gaff, H., Smith, D.L., Morris, J.G.: Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe. Proc. Nat. Acad. Sci. U.S.A. 108, 8767–8772 (2011)CrossRefGoogle Scholar
  14. 14.
    Neilan, R.L.M., Schaefer, E., Gaff, H., Fister, K.R., Lenhart, S.: Modeling optimal intervention strategies for cholera. Bull. Math. Biol. 72, 2004–2018 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Peng, R.: Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Part I. J. Differ. Equ. 247, 1096–1119 (2009)CrossRefGoogle Scholar
  16. 16.
    Peng, R., Yi, F.: Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement. Phys. D 259, 8–25 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Peng, R., Zhao, X.-Q.: A reaction–diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25, 1451–1471 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Posny, D., Wang, J., Mukandavire, Z., Modnak, C.: Analyzing transmission dynamics of cholera with public health interventions. Math. Biosci. 264, 38–53 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Shuai, Z., van den Driessche, P.: Global dynamics of cholera models with differential infectivity. Math. Biosci. 234, 118–126 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Smith, H.L., Zhao, X.-Q.: Robust persistence for semidynamical systems. Nonlinear Anal. 47, 6169–6179 (2001)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Thieme, H.R.: Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30(7), 755–763 (1992)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Thieme, H.R.: Spectral bound and reproduction number for intinite-dimensional population structure and time heterogeneity. SIAMJ. Appl. Math. 70, 188–211 (2009)CrossRefGoogle Scholar
  23. 23.
    Tien, J.H., Earn, D.J.D.: Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull. Math. Biol. 72, 1506–1533 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Tuite, A.R., Tien, J.H., Eisenberg, M., Earn, D.J.D., Ma, J., Fisman, D.N.: Cholera epidemic in Haiti, 2010: using a transmission model to explain spatial spread of disease and identify optimal control interventions. Ann. Intern. Med. 154, 593–601 (2011)CrossRefGoogle Scholar
  25. 25.
    Vaidya, N.K., Wang, F.-B., Zou, X.: Avian influenza dynamics in mild birds with bird mobility and spatial heterogeneous environment. Discret. Contin. Dyn. Syst. Ser B 17, 2829–2848 (2012)CrossRefGoogle Scholar
  26. 26.
    Wang, X., Wang, J.: Disease dynamics in a coupled cholera model linking within-host and between-host interactions. J. Biol. Dyn. 11(S1), 238–262 (2013)MathSciNetGoogle Scholar
  27. 27.
    Wang, W., Zhao, X.-Q.: Basic reproduction number for reaction–diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11, 1652–1673 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang, F.-B., Shi, J., Zou, X.: Dynamics of a host-pathogen system on a bounded spatial domain. Commun. Pure Appl. Anal. 14(6), 2535–2560 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wang, J., Zhang, R., Kuniya, T.: A note on dynamics of an age-of-infection cholera model. Math. Biosci. Eng. 13(1), 227–247 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Webb, G.F.: A reaction–diffusion model for a deterministic diffusive models. J. Math. Anal. Appl. 84, 150–161 (1981)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. CRC Press, Boca Raton (1985)zbMATHGoogle Scholar
  32. 32.
    Wu, Y., Zou, X.: Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism. J. Differ. Equ. 261, 4424–4447 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wu, Y., Zou, X.: Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates. J. Differ. Equ. 264, 4989–5024 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Mathematical ScienceHeilongjiang UniversityHarbinPeople’s Republic of China

Personalised recommendations