Advertisement

Hilbert’s ‘Monkey Saddle’ and Other Curiosities in the Equilibrium Problem of Three Point Particles on a Circle for Repulsive Power Law Forces

  • Michael K. H. KiesslingEmail author
  • Renna Yi
Article
  • 13 Downloads

Abstract

This article determines all possible (proper as well as pseudo) equilibrium arrangements under a repulsive power law force of three point particles on the unit circle. These are the critical points of the sum over the three (standardized) Riesz pair interaction terms, each given by \(V_s(r)= s^{-1}\left( r^{-s}-1 \right) \) when the real parameter \(s \ne 0\), and by \(V_0(r) := \lim _{s\rightarrow 0}V_s(r) = -\ln r\); here, r is the chordal distance between the particles in the pair. The bifurcation diagram which exhibits all these equilibrium arrangements together as functions of s features three obvious “universal” equilibria, which do not depend on s, and two not-so-obvious continuous families of s-dependent non-universal isosceles triangular equilibria. The two continuous families of non-universal equilibria are disconnected, yet they bifurcate off of a common universal limiting equilibrium (the equilateral triangular configuration), at \(s=-4\), where the graph of the total Riesz energy of the 3-particle configurations has the shape of a “monkey saddle.” In addition, one of the families of non-universal equilibria also bifurcates off of another universal equilibrium (the antipodal arrangement), at \(s=-2\). While the bifurcation at \(s=-4\) is analytical, the one at \(s=-2\) is not. The bifurcation analysis presented here is intended to serve as template for the treatment of similar N-point equilibrium problems on \({\mathbb {S}}^d\) for small N.

Notes

Acknowledgements

We thank Johann Brauchart for [1] and his comments, and Bernd Kawohl for the history of the book by Hilbert & Cohn-Vossen. We also thank the referee for constructive criticism.

References

  1. 1.
    Andersson, S.: Eine Beschreibung komplexer anorganischer Kristallstrukturen. Angew. Chem. 95, 67–80 (1983)CrossRefGoogle Scholar
  2. 2.
    Atiyah, M., Sutcliffe, P.: Polyhedra in physics, chemistry, and geometry. Milan J. Math. 71, 33–58 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Beck, J.: Sums of distances between points on a sphere—an application of the theory of irregularities of distribution to discrete geometry. Mathematica 31, 33–41 (1984)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Berman, J., Hanes, K.: Optimizing the arrangement of points on the unit sphere. Math. Comp. 31, 1006–1008 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bétermin, L., Sandier, E.: Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere. Constr. Approx. 47, 39–74 (2018).  https://doi.org/10.1007/s00365-016-9357-z MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Björck, G.: Distributions of positive mass, which maximize a certain generalized energy integral. Ark. Mat. 3, 255–269 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bowick, M.J., Cecka, C., Middleton, A.: http://thomson.phy.syr.edu/. Accessed 17 Jan 2019
  8. 8.
    Brauchart, J.S., Hardin, D.P., Saff, E.B.: The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere. In: Arvesú, J., ópez Lagomasino, G.L (eds.) Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications, Contemporary Mathematics, 578, pp. 31–61 AMS, Providence (2012)Google Scholar
  9. 9.
    Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dragnev, P.D., Legg, D.A., Townsend, D.W.: Discrete logarithmic energy on the sphere. Pacific J. Math. 207(2), 345–358 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Erber, T., Hockney, G.M.: Complex systems: equilibrium configurations of \(N\) equal charges on a sphere \((2\le N\le 112)\), pp. 495–594 in Adv. Chem. Phys.XCVIII (I. Prigogine, S. A. Rice, Eds.). Wiley, New York (1997)Google Scholar
  12. 12.
    Fekete, M.: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z. 17, 228–249 (1923)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fejes Tóth, L.: On the sum of distances determined by a point set. Acta. Math. Acad. Sci. Hung. 7, 397–401 (1956)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hardin, D.P., Saff, E.B.: Discretizing manifolds via minimum energy points. Not. AMS 51, 1186–1194 (2004)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hilbert, D., Cohn-Vossen, S.: Geometry and the Imagination, 2nd edn. Chelsea, New York (1952)zbMATHGoogle Scholar
  16. 16.
    Hou, X., Shao, J.: Spherical distribution of 5 points with maximal distance sum. Discrete Comput. Geom. 46(1), 156–174 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Melnyk, T.W., Knop, O., Smith, W.R.: Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited. Canad. J. Chem. 55(10), 1745–1761 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nerattini, R., Brauchart, J.S., Kiessling, M.K.-H.: Optimal \(N\)-point configurations on the sphere: “Magic” numbers and Smale’s 7th problem. J. Stat. Phys. 157, 1138–1206 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rakhmanov, E.A., Saff, E.B., Zhou, Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1, 647–662 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rakhmanov, E.A., Saff, E.B., Zhou, Y.M.: Electrons on the sphere. In: Ali, R.M., Ruscheweyh, S., Saff, E.B. (eds.) Computational Methods and Function Theory, pp. 111–127. World Scientific, Singapore (1995)Google Scholar
  21. 21.
    Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19, 5–11 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sattinger, D.H.: Bifurcation and symmetrybreaking in applied mathematics. Bull. Am. Math. Soc. 3, 779–819 (1980)CrossRefzbMATHGoogle Scholar
  23. 23.
    Schwartz, R.E.: The Phase Transition in 5 Point Energy Minimization, (eprint) arXiv:1610.03303v3 [math.OC]
  24. 24.
    Smale, S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998). see also version 2 on Steve Smale’s home page: http://math.berkeley.edu/~smale/
  25. 25.
    Stolarsky, K.B.: Spherical distributions of \(N\) points with maximal distance sums are well spaced. Proc. Am. Math. Soc. 48, 203–206 (1975)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Thomson, J.J.: On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. Philos. Mag. 7, 237–265 (1904)CrossRefzbMATHGoogle Scholar
  27. 27.
    Whyte, L.L.: Unique arrangements of points on a sphere. Am. Math. Mon. 59, 606–611 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Womersley, R.S.: Robert Womersley’s home page. http://web.maths.unsw.edu.au/~rsw/

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsRutgers UniversityPiscatawayUSA

Personalised recommendations