Advertisement

The Behavior of Boundary Layer for the Compressible Planar MHD Equations at Small Shear Viscosity

  • Xia Ye
  • Jianwen ZhangEmail author
Article
  • 44 Downloads

Abstract

The vanishing shear viscosity limit to an initial-boundary value problem of planar MHD equations for compressible viscous heat-conducting fluids is justified and the convergence rates are obtained. More important, to capture the behavior of the solutions at small shear viscosity, both the boundary-layer thickness and the boundary-layer corrector are discussed.

Keywords

Compressible MHD Vanishing shear viscosity limit Convergence rates Boundary layer Boundary-layer corrector 

Mathematics Subject Classification

35B45 35M10 76N17 76N20 76W05 

Notes

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 11671333, 11701240, 11271306, 11371297), the Natural Science Foundation of Fujian Province of China (Grant No. 2015J01023), and the Fundamental Research Funds for the Central Universities (Grant No. 20720160012).

References

  1. 1.
    Amosov, A.A., Zlotnik, A.A.: A difference scheme on a non-uniform mesh for the equations of one-dimensional magneticgasdynamics. U.S.S.R. Comput. Math. Math. Phys. 29(2), 129–139 (1990)CrossRefGoogle Scholar
  2. 2.
    Chen, G.-Q., Wang, D.: Global solutions of nonlinear magnetohydrodynamics with large initial data. J. Differ. Equ. 182, 344–376 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, G.-Q., Wang, D.: Existence and continuous dependence of large solutions for the magnetohydrodynamic equations. Z. Angew. Math. Phys. 54, 608–632 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fan, J.S., Huang, S.X., Li, F.C.: Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. Kinet. Relat. Models 10, 1035–1053 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fan, J.S., Jiang, S.: Zero shear viscosity limit for the Navier–Stokes equations of compressible isentropic fluids with cylindric symmetry. Rend. Semin. Mat. Univ. Politec. Torino 65, 35–52 (2007)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Fan, J.S., Jiang, S., Nakamura, G.: Vanishing shear viscosity limit in the magnetohydrodynamic equations. Commun. Math. Phys. 270, 691–708 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions for the Navier–Stokes equations of compressible fluids. J. Math. Fluid Mech. 3, 358–392 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Frid, H., Shelukhn, V.V.: Boundary layer for the Navier–Stokes equations of compressible fluids. Commun. Math. Phys. 208, 309–330 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Frid, H., Shelukhin, V.V.: Vanishing shear viscosity in the equations of compressible fluids for the flows with the cylinder symmetry. SIAM J. Math. Anal. 31, 1144–1156 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hoff, D.: Global solutions of the Navier–Stokes equations for multidimendional compressible flow with disconstinuous initial data. J. Differ. Equ. 120, 215–254 (1995)CrossRefGoogle Scholar
  11. 11.
    Hoff, D.: Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations fo state and discontinuous initial data. Arch. Ration. Mech. Anal. 132, 1–14 (1995)CrossRefGoogle Scholar
  12. 12.
    Huang, X.D., Li, J., Xin, Z.P.: Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier–Stokes equations. Commun. Pure Appl. Math. 65, 549–585 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jiang, S., Zhang, J.W.: Boundary layers for the Navier–Stokes equations of compressible heat-conducting flows with cylindrical symmetry. SIAM J. Math. Anal. 41, 237–268 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kazhikhov, A.V., Shelukhin, V.V.: Unique global solution with respect to time of initial-boundary-value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech. 41, 273–282 (1977)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kazhikhov, A.V.: A priori estimates for the solutions of equations of magnetic-gas-dynamics. Boundary Value Problems for Equations of Mathematical Physics, Krasnoyarsk (1987). In Russian Google Scholar
  16. 16.
    Ladyzenskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasilinear Equations of Parabolic Type, vol. 23. American Mathematical Society, Providence (1968)CrossRefGoogle Scholar
  17. 17.
    Li, H.L., Xu, X.Y., Zhang, J.W.: Global classsical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum. SIAM J. Math. Anal. 45, 1356–1387 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lions, P.-L.: Mathematical Topics in Fluid Dynamics, vol. 2. Compressible Models. Oxford Science Publication, Oxford (1998)zbMATHGoogle Scholar
  19. 19.
    Oleinik, O.A., Radkevic, E.V.: Second Order Equations with Nonnegative Characteristic Form. American Mathematical Society, New York (1973)CrossRefGoogle Scholar
  20. 20.
    Qin, X.L., Yang, T., Yao, Z.-A., Zhou, W.S.: Vanishing shear viscosity and boundary layer for the Navier–Stokes equations with cylindrical symmetry. Arch. Rational Mech. Anal. 216, 1049–1086 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Qin, X.L., Yang, T., Yao, Z.-A., Zhou, W.S.: A study on the boundary layer for the planar magnetohydrodynamics system. Acta Math. Sci. Ser. B Engl. Ed. 35, 787–806 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Rosenhead, L.: A discussion on the first and second viscosities of fluids. Introduction. The second coefficient of viscosity: a brief review of fundamentals. Proc. R. Soc. Lond. Ser. A 226, 1–6 (1954)MathSciNetGoogle Scholar
  23. 23.
    Schlichting, H.: Boundary Layer Theory, 7th edn. McGraw-Hill Company, London (1979)zbMATHGoogle Scholar
  24. 24.
    Secchi, P.: Existence theorems for compressible viscous fluids having zero shear viscosity. Rend. Semin. Mat. Univ. Padova 71, 73–102 (1984)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Serrin, J.: Mathematical Principles of Classical Fluid Mechanis, Handbuch der Physik, Vol. 8/1. Springer, Berlin (1959)Google Scholar
  26. 26.
    Shelukhin, V.V.: The limit of zero shear viscosity for compressible fluids. Arch. Rational Mech. Anal. 143, 357–374 (1998)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Shelukhin, V.V.: Vanishing shear viscosity in a free-boundary problem for the equations of compressible fluids. J. Differ. Equ. 167, 73–86 (2000)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Smagulov, ShS, Durmagambetov, A.A., Iskenderova, D.A.: The Cauchy problem for the equations of magneto-gas-dynamics. Differ. Uravn. 2, 278–288 (1993)zbMATHGoogle Scholar
  29. 29.
    Temam, R., Wang, X.: Asymptotic analysis of Oseen type equations in a channel at small viscosity. Indiana Univ. Math. J. 45, 863–916 (1996)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Temam, R., Wang, X.: On the behavior of the solutions of the Navier–Stokes equations at vanishing viscosity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25(4), 807–828 (1997)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Temam, R., Wang, X.: Boundary layers for Oseen’s type equations in space dimension three. Russ. J. Math. Phys. 5, 227–246 (1998)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Wang, D.: Large solutions to the initial-boundary value problem for planar magnetohydrodynamics. SIAM J. Appl. Math. 63, 142–1441 (2003)MathSciNetGoogle Scholar
  33. 33.
    Wang, T.: Vanishing shear viscosity in the magnetohydrodynamic equations with temperature-dependent heat conductivity. Z. Angew. Math. Phys. 66, 3299–3307 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Xiao, Y.L., Xin, Z.P.: On the vanishing viscosity limit for the 3D Navier–Stokes equations with a slip boundary condition. Commun. Pure Appl. Math. 60, 1027–1055 (2007)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Yao, L., Zhang, T., Zhu, C.J.: Boundary layers for compressible Navier–Stokes equations with density-dependent viscosity and cylindrical symmetry. Ann. Inst. H. Poincaré Anal. NonLinéaire 28, 677–709 (2011)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Ye, X., Zhang, J.W.: On the behavior of boundary layers of one-dimensional isentropic planar MHD equations with vanishing shear viscosity limit. J. Differ. Equ. 260, 3927–3961 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ye, X., Zhang, J.W.: Boundary-layer phenomena for the cylindrically symmetric Navier–Stokes equations of compressible heat-conducting fluids with large data at vanishing shear viscosity. Nonlinearity 29, 2395–2416 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhang, J.W., Xie, F.: Global solution for a one-dimensional model problem in thermally radiative magnetohydrodynamics. J. Differ. Equ. 245, 1853–1882 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceJiangxi Normal UniversityNanchangPeople’s Republic of China
  2. 2.School of Mathematical SciencesXiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations