Advertisement

Properties of Stationary Statistical Solutions of the Three-Dimensional Navier–Stokes Equations

  • Ciprian Foias
  • Ricardo M. S. RosaEmail author
  • Roger M. Temam
Article

Abstract

The stationary version of a modified definition of statistical solution for the three-dimensional incompressible Navier–Stokes equations introduced in a previous work is investigated. Particular types of such stationary statistical solutions and their analytical properties are addressed. Results on the support and carriers of these stationary statistical solutions are also given, showing in particular that they are supported on the weak global attractor and are carried by a more regular part of the weak global attractor containing Leray–Hopf weak solutions which are locally strong solutions. Two recurrence-type results related to these measures are also proved.

Keywords

Navier–Stokes equations Stationary statistical solutions Accretive measures Recurrence 

Mathematics Subject Classification

35Q30 76D06 76D06 37A05 37L40 37B20 

Notes

References

  1. 1.
    Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  2. 2.
    Bercovici, H., Constantin, P., Foias, C., Manley, O.P.: Exponential decay of the power spectrum of turbulence. J. Stat. Phys. 80, 579–602 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bourbaki, N.: Élements de mathématique. Fasc. XXXV. Livre VI: Intégration. Chapitre IX: Intégration sur les espaces topologiques séparés, Actualités Scientifiques et Industrielles, no. 1343, Hermann, Paris (1969)Google Scholar
  4. 4.
    Brown, A., Pearcy, C.: Introduction to Operator Theory. I. Elements of Functional Analysis. Graduate Texts in Mathematics, vol. 55. Springer, New York (1977)CrossRefGoogle Scholar
  5. 5.
    Chekroun, M.D., Glatt-Holtz, N.E.: Invariant measures for dissipative dynamical systems: abstract results and applications. Commun. Math. Phys. 316(3), 723–761 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Constantin, P., Foias, C.: Navier–Stokes Equation. University of Chicago Press, Chicago (1989)zbMATHGoogle Scholar
  7. 7.
    Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  8. 8.
    Dunford, N., Schwartz, J.T.: Linear Operators, I. General Theory, Pure and Applied Mathematics, vol. 7. Interscience, New York (1958)zbMATHGoogle Scholar
  9. 9.
    Foias, C.: Statistical study of Navier–Stokes equations I. Rend. Semin. Mat. Univ. Padova 48, 219–348 (1972)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Foias, C.: Statistical study of Navier–Stokes equations II. Rend. Semin. Mat. Univ. Padova 49, 9–123 (1973)zbMATHGoogle Scholar
  11. 11.
    Foias, C.: Solutions Statistiques des Equations de Navier–Stokes. Cours au Collège de France (1974) (unpublished)Google Scholar
  12. 12.
    Foias, C., Guillopé, C., Temam, R.: New a priori estimates for Navier–Stokes equations in dimension 3. Commun. Partial Differ. Equ. 6(3), 329–359 (1981)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Foias, C., Manley, O.P., Rosa, R., Temam, R.: Navier–Stokes Equations and Turbulence, Encyclopedia of Mathematics and Its Applications, vol. 83. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  14. 14.
    Foias, C., Prodi, G.: Sur les solutions statistiques des équations de Navier–Stokes. Ann. Mat. Pura Appl. 111(4), 307–330 (1976)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Foias, C., Rosa, R., Temam, R.: Topological properties of the weak global attractor of the three-dimensional Navier–Stokes equations. Discrete Contin. Dyn. Syst. 27(4), 1611–1631 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Foias, C., Rosa, R., Temam, R.: Properties of time-dependent statistical solutions of the three-dimensional Navier–Stokes equations. Ann. Inst. Fourier 63(6), 2515–2573 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Foias, C., Rosa, R., Temam, R.: Convergence of time averages of weak solutions of the three-dimensional Navier–Stokes equations. J. Stat. Phys. 160, 519–531 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Foias, C., Temam, R.: On the Stationary of the Navier–Stokes Equations and Turbulence. Publications Mathematiques d’Orsay, no. 120-75-28, pp. 38–77 (1975)Google Scholar
  19. 19.
    Foias, C., Temam, R.: Some analytic and geometric properties of the solutions of the Navier–Stokes equations. J. Math. Pures Appl. 58, 339–368 (1979)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Foias, C., Temam, R.: The connection between the Navier–Stokes equations, dynamical systems, and turbulence theory. In: Crandall, M.G., Rabinowitz, P.H., Turner R.E.L. (eds.) Directions in Partial Differential Equations (Madison, WI, 1985), Publ. Math. Res. Center Univ. Wisconsin, vol. 54, pp. 55–73. Academic Press, Boston, MA (1987)Google Scholar
  21. 21.
    Folland, G.B.: Real Analysis: Modern Techniques and Their Applications, 2nd edn. Wiley, New York (1999)zbMATHGoogle Scholar
  22. 22.
    Krylov, N., Bogoliubov, N.N.: La théorie générale de la mesure dans son application à l’étude des systèmes dynamiques de la mécanique non linéaire. Ann. Math. 38, 65–113 (1937)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kuratowski, K.: Topology, vol. 1. Academic Press, New York (1966)zbMATHGoogle Scholar
  24. 24.
    Ladyzhenskaya, O.: The Mathematical Theory of Viscous Incompressible Flow, Revised English edn. (Translated from the Russian by Richard A. Silverman). Gordon and Breach Science Publishers, New York (1963)Google Scholar
  25. 25.
    Leray, J.: Essai sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lukaszewicz, G., Real, J., Robinson, J.C.: Invariant measures for dissipative systems and generalised Banach limits. J. Dyn. Differ. Equ. 23(2), 225–250 (2011)CrossRefGoogle Scholar
  27. 27.
    Moschovakis, Y.N.: Descriptive Set Theory. North-Holland Publishing Co., Amsterdam (1980)zbMATHGoogle Scholar
  28. 28.
    Pollicott, M., Yuri, M.: Dynamical Systems and Ergodic Theory. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  29. 29.
    Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)zbMATHGoogle Scholar
  30. 30.
    Scheffer, V.: Hausdorff measures and the Navier–Stokes equations. Commun. Math. Phys. 55, 97–112 (1977)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and Its Applications, vol. 2, 3rd edn. North-Holland Publishing Co., Amsterdam (1984). (Reedition in 2001 in the AMS Chelsea series, AMS, Providence)Google Scholar
  32. 32.
    Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68 (2nd edn., 1997). Springer, New York (1988)CrossRefGoogle Scholar
  33. 33.
    Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis, 2nd edn. SIAM, Philadelphia (1995)CrossRefGoogle Scholar
  34. 34.
    Vishik, M.I., Fursikov, A.V.: Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier–Stokes equations. Sib. Math. J. 19(5), 710–729 (1978). (Translated from Sib. Mat. Sb. 19(5), 1005–1031, September–October (1978))MathSciNetCrossRefGoogle Scholar
  35. 35.
    Vishik, M.I., Fursikov, A.V.: Mathematical Problems of Statistical Hydrodynamics. Kluwer, Dordrecht (1988)zbMATHGoogle Scholar
  36. 36.
    Walters, P.: An Introduction to Ergodic Theory, Graduate Texts in Mathematics 79. Springer, New York (1982)CrossRefGoogle Scholar
  37. 37.
    Wang, X.: Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete Contin. Dyn. Syst. 23, 521–540 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA
  2. 2.Instituto de MatemáticaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Department of MathematicsIndiana UniversityBloomingtonUSA

Personalised recommendations