Advertisement

Journal of Dynamics and Differential Equations

, Volume 31, Issue 4, pp 2205–2222 | Cite as

Invariance Pressure Dimensions for Control Systems

  • Xingfu Zhong
  • Yu HuangEmail author
Article

Abstract

We introduce two kinds of invariance pressure dimension, which not only give dimension characteristics of invariance pressure and inner invariance pressure introduced by Colonius et al. (J Dyn Differ Equ,  https://doi.org/10.1007/s10884-018-9646-2, 2018) for discrete-time control systems, but also generalize the corresponding concepts proposed by Huang and Zhong (Syst Control Lett 112:36–41, 2018). Then we derive some basic properties for them and investigate the relations among these invariance pressures defined by controls and by invariant covers. As an application, we characterize the complexity of a control system with zero invariance entropy.

Keywords

Control system Invariance pressure Dimension characteristic Zero invariance entropy 

Notes

Acknowledgements

The authors are grateful to the referees for their valuable comments which have led to improvement of the paper. A part of this work was done when the first author visited Western University. The author would like to thank Prof. X. Zou and his institute for their hospitality.

References

  1. 1.
    Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Am. Math. Soc. 114(2), 309–319 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Barreira, L.M.: A non-additive thermodynamic formalism and dimension theory of hyperbolic dynamical systems. Ergod. Theory Dyn. Syst. 16(5), 871–927 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–401 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bowen, R.: Hausdorff dimension of quasi-circles. Publications Mathématiques De Linstitut Des Hautes Études Scientifiques 50(1), 11–25 (1979)zbMATHCrossRefGoogle Scholar
  5. 5.
    Cassaigne, J.: Constructing infinite words of intermediate complexity. In: Ito, M., Toyama, M. (eds.) Developments in Language Theory, pp. 173–184. Springer, Berlin (2003)CrossRefGoogle Scholar
  6. 6.
    Chen, E., Dou, D., Zheng, D.: Variational principles for amenable metric mean dimensions. arXiv preprint arXiv:1708.02087 (2017)
  7. 7.
    Colonius, F.: Invariance entropy, quasi-stationary measures and control sets. arXiv preprint arXiv:1705.08658 (2017)
  8. 8.
    Colonius, F., Fukuoka, R., Santana, A.: Invariance entropy for topological semigroup actions. Proc. Am. Math. Soc. 141(12), 4411–4423 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Colonius, F., Kawan, C.: Invariance entropy for control systems. SIAM J. Control Optim. 48(3), 1701–1721 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Colonius, F., Kawan, C., Nair, G.: A note on topological feedback entropy and invariance entropy. Syst. Control Lett. 62(5), 377–381 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Colonius, F., Santana, A.J., Cossich, J.A.N.: Invariance pressure for control systems. J. Dyn. Differ. Equ. (2018).  https://doi.org/10.1007/s10884-018-9646-2 MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Hoock, A.M.: Topological and invariance entropy for infinite-dimensional linear systems. J. Dyn. Control Syst. 20(1), 19–31 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Huang, Y., Zhong, X.: Carathéodory–Pesin structures associated with control systems. Syst. Control Lett. 112, 36–41 (2018)zbMATHCrossRefGoogle Scholar
  14. 14.
    Kawan, C.: Invariance Entropy for Deterministic Control Systems. Lecture Notes in Mathematics, vol. 2089. Springer, Berlin (2013)zbMATHCrossRefGoogle Scholar
  15. 15.
    Nair, G.N., Evans, R.J., Mareels, I.M.Y., Moran, W.: Topological feedback entropy and nonlinear stabilization. IEEE Trans. Autom. Control 49(9), 1585–1597 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Pesin, Y.B.: Dimension theory in dynamical systems: contemporary views and applications. University of Chicago (1997)Google Scholar
  17. 17.
    Pesin, Y.B., Pitskel, B.S.: Topological pressure and the variational principle for noncompact sets. Funct. Anal. Its Appl. 18(4), 307–318 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Ruelle, D.: Statistical mechanics on a compact set with \(z^\nu \) action satisfying expansiveness and specification. Trans. Am. Math. Soc. 185, 237–251 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Rungger, M., Zamani, M.: Invariance feedback entropy of uncertain control systems. arXiv preprint arXiv:1706.05242 (2017)
  20. 20.
    Silva, A.D., Kawan, C.: Invariance entropy for a class of partially hyperbolic sets. arXiv preprint arXiv:1711.01181 (2017)
  21. 21.
    Silva, A.J.D.: Invariance entropy for random control systems. Math. Control Signals Syst. 25(4), 491–516 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Silva, A.J.D.: Outer invariance entropy for linear systems on lie groups. SIAM J. Control Optim. 52(6), 3917–3934 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, Berlin (1982)zbMATHCrossRefGoogle Scholar
  24. 24.
    Zhao, Y., Pesin, Y.: Scaled entropy for dynamical systems. J. Stat. Phys. 158(2), 447–475 (2015)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsGuangdong University of Foreign StudiesGuangzhouPeople’s Republic of China
  2. 2.School of MathematicsSun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations