Journal of Dynamics and Differential Equations

, Volume 31, Issue 4, pp 1793–1823 | Cite as

On Blowup Solutions to the Focusing Intercritical Nonlinear Fourth-Order Schrödinger Equation

  • Van Duong DinhEmail author


In this paper we study dynamical properties of blowup solutions to the focusing intercritical (mass-supercritical and energy-subcritical) nonlinear fourth-order Schrödinger equation. We firstly establish the profile decomposition of bounded sequences in \(\dot{H}^{\gamma _{\text {c}}} \cap \dot{H}^2\). We also prove a compactness lemma and a variational characterization of ground states related to the equation. As a result, we obtain the \(\dot{H}^{\gamma _{\text {c}}}\)-concentration of blowup solutions with bounded \(\dot{H}^{\gamma _{\text {c}}}\)-norm and the limiting profile of blowup solutions with critical \(\dot{H}^{\gamma _{\text {c}}}\)-norm.


Nonlinear fourth-order Schrödinger equation Blowup Concentration Limiting profile 



The author would like to express his deep thanks to his wife—Uyen Cong for her encouragement and support. He would like to thank his supervisor Prof. Jean-Marc Bouclet for the kind guidance and constant encouragement. He also would like to thank the reviewer for his/her helpful comments and suggestions.


  1. 1.
    Ben-Artzi, M., Koch, H., Saut, J.C.: Disperion estimates for fourth-order Schrödinger equations. C.R.A.S. 330, 87–92 (2000)zbMATHGoogle Scholar
  2. 2.
    Baruch, G., Fibich, G., Mandelbaum, E.: Singular solutions of the biharmonic nonlinear Schödinger equation. SIAM J. Appl. Math. 70, 3319–3341 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baruch, G., Fibich, G.: Singular solutions of the \(L^2\)-supercritical biharmonic nonlinear Schrödigner equation. Nonlinearity 24, 1843–1859 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bergh, J., Löfstöm, J.: Interpolation Spaces. Springer, New York (1976)CrossRefGoogle Scholar
  5. 5.
    Boulenger, T., Lenzmann, E.: Blowup for biharmonic NL4S. Ann. Sci. Éc. Norm. Supér. 50, 503–544 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cho, Y., Ozawa, T., Xia, S.: Remarks on some dispersive estimates. Commun. Pure Appl. Anal. 10, 1121–1128 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dinh, V.D.: Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces. Preprint arXiv:1609.06181 (2016)
  8. 8.
    Dinh, V.D.: On well-posedness, regularity and ill-posedness for the nonlinear fourth-order Schrödinger equation. Bull. Belg. Math. Soc. Simon Stevin. 25, 1–23 (2018)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dinh, V.D.: On the focusing mass-critical nonlinear fourth-order Schrödinger equation below the energy space. Dyn. Partial Differ. Equ. 14, 295–320 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fibich, G., Ilan, B., Papanicolaou, G.: Self-focusing with fourth-order dispersion. SIAM J. Appl. Math. 62, 1437–1462 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ginibre, J., Velo, G.: The global Cauchy problem for the nonlinear Klein–Gordon equation. Math. Z. 189, 487–505 (1985)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Guo, Q.: A note on concentration for blowup solutions to supercritical Schrödinger equations. Proc. Am. Math. Soc. 141, 4215–4227 (2013)CrossRefGoogle Scholar
  13. 13.
    Hao, C., Hsiao, L., Wang, B.: Well-posedness for the fourth-order Schrödinger equations. J. Math. Anal. Appl. 320, 246–265 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hao, C., Hsiao, L., Wang, B.: Well-posedness of the Cauchy problem for the fourth-order Schrödinger equations in high dimensions. J. Math. Anal. Appl. 328, 58–83 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hmidi, T., Keraani, S.: Blowup theory for the critical nonlinear Schrödinger equation revisited. Int. Math. Res. Not. 46, 2815–2828 (2005)CrossRefGoogle Scholar
  16. 16.
    Huo, Z., Jia, Y.: The Cauchy problem for the fourth-order nonlinear Schrödinger equation related to the vortex filament. J. Differ. Equ. 214, 1–35 (2005)CrossRefGoogle Scholar
  17. 17.
    Kato, T.: On nonlinear Schrödinger equations. II. \(H^s\)-solutions and unconditional well-posedness. J. Anal. Math. 67, 281–306 (1995)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Karpman, V.I.: Stabilization of soliton instabilities by higher-order dispersion: fourth order nonlinear Schrödinger-type equations. Phys. Rev. E 53, 1336–1339 (1996)CrossRefGoogle Scholar
  19. 19.
    Karpman, V.I., Shagalov, A.G.: Stability of soliton described by nonlinear Schrödinger-type equations with higher-order dispersion. Physica D 144, 194–210 (2000)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Keel, M., Tao, T.: Endpoint strichartz estimates. Am. J. Math. 120, 955–980 (1998)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Merle, F., Raphael, P.: Blow up of critical norm for some radial \(L^2\) super critical nonlinear Schrödinger equations. Am. J. Math. 130, 945–978 (2008)CrossRefGoogle Scholar
  22. 22.
    Miao, C., Xu, G., Zhao, L.: Global well-posedness and scattering for the defocusing energy critical nonlinear Schrödinger equations of fourth-order in the radial case. J. Differ. Equ. 246, 3715–3749 (2009)CrossRefGoogle Scholar
  23. 23.
    Miao, C., Xu, G., Zhao, L.: Global well-posedness and scattering for the defocusing energy critical nonlinear Schrödinger equations of fourth-order in dimensions \(d\ge 9\). J. Differ. Equ. 251, 3381–3402 (2011)CrossRefGoogle Scholar
  24. 24.
    Miao, C., Wu, H., Zhang, J.: Scattering theory below energy for the cubic fourth-order Schrödinger equation. Math. Nachr. 288, 798–823 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Miao, C., Zhang, B.: Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete Contin. Dyn. Syst. 17, 181–200 (2007)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Pausader, B.: Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case. Dyn. Partial Differ. Equ. 4, 197–225 (2007)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Pausader, B.: The cubic fourth-order Schrödinger equation. J. Funct. Anal. 256, 2473–2517 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)CrossRefGoogle Scholar
  30. 30.
    Zhu, S., Yang, H., Zhang, J.: Limiting profile of the blow-up solutions for the fourth-order nonlinear Schrödinger equation. Dyn. Partial Differ. Equ. 7, 187–205 (2010)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhu, S., Yang, H., Zhang, J.: \(L^{p_c}\)-concentration of blow-up solutions for the biharmonic nonlinear Schrödinger equation. Appl. Anal. 89, 1827–1835 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zhu, S., Yang, H., Zhang, J.: Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation. Nonlinear Anal. 74, 6186–6201 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Mathématiques de Toulouse UMR5219Université Toulouse CNRSToulouse Cedex 9France
  2. 2.Department of MathematicsHCMC University of PedagogyHo Chi MinhVietnam

Personalised recommendations