Advertisement

Journal of Dynamics and Differential Equations

, Volume 31, Issue 4, pp 1777–1791 | Cite as

A Geometric Perspective on Regularized Optimal Transport

  • Flavien LégerEmail author
Article

Abstract

We present new geometric intuition on dynamical versions of regularized optimal transport. We introduce two families of variational problems on Riemannian manifolds which contain analogues of the Schrödinger bridge problem and the Yasue problem. We also propose an analogue of the Hopf–Cole transformation in the geometric setting.

Keywords

Schrödinger bridge Wasserstein space Optimal transport 

Notes

Acknowledgements

The author would like to thank Alfred Galichon for introducing him to the subject and constant interest in this work, Robert V. Kohn for very helpful comments and Montacer Essid for fruitful discussions.

References

  1. 1.
    Ambrosio, L., Gigli, L., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008).  https://doi.org/10.1007/978-3-7643-8722-8
  2. 2.
    Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000).  https://doi.org/10.1007/s002110050002 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bernstein, S.: Sur les liaisons entre les grandeurs aléatoires. Verh. Int. Math.-Kongr. Zürich, 288–309 (1932) (French)Google Scholar
  4. 4.
    Beurling, A.: An automorphism of product measures. Ann. Math. 72(1), 189–200 (1960). http://www.jstor.org/stable/1970151. Accessed 26 June 2018MathSciNetCrossRefGoogle Scholar
  5. 5.
    Carlen, E.: Stochastic mechanics: a look back and a look ahead. In: Faris, W.G. (ed.) Diffusion, Quantum Theory, and Radically Elementary Mathematics (MN-47), pp. 117–140. Princeton University Press, Princeton (2006). http://www.jstor.org/stable/j.ctt7ztfkx.8. Accessed 26 June 2018
  6. 6.
    Chen, Y., Georgiou, T.T., Pavon, M.: On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint. J. Optim. Theory Appl. 169(2), 671–691 (2016).  https://doi.org/10.1007/s10957-015-0803-z MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, pp. 2292–2300 (2013)Google Scholar
  8. 8.
    Dai Pra, P.: A stochastic control approach to reciprocal diffusion processes. Appl. Math. Optim. 23(1), 313–329 (1991).  https://doi.org/10.1007/BF01442404 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Föllmer, H.: Random fields and diffusion processes. École d’Été de Probabilités de Saint-Flour XV–XVII, 1985–87, Lecture Notes in Mathematics, vol. 1362, pp. 101–203. Springer, Berlin (1988).  https://doi.org/10.1007/BFb0086180 Google Scholar
  10. 10.
    Fortet, R.: Résolution d’un système d’équations de M. Schrödinger. J. Math. Pures Appl. 19, 83–105 (1940)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Gentil, I., Léonard, C.: About the analogy between optimal transport and minimal entropy. Ann. Fac. Sci. Toulouse Math. (6) 26(3), 569–601 (2017).  https://doi.org/10.5802/afst.1546 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Galichon, A., Salanié, B.: Matching with trade-offs: revealed preferences over competing characteristics. Technical report (2010).  https://doi.org/10.2139/ssrn.1487307
  13. 13.
    Jamison, B.: The Markov processes of Schrödinger. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 32(4), 323–331 (1975).  https://doi.org/10.1007/BF00535844 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998).  https://doi.org/10.1137/S0036141096303359 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Léonard, C.: From the Schrödinger problem to the Monge–Kantorovich problem. J. Funct. Anal. 262(4), 1879–1920 (2012).  https://doi.org/10.1016/j.jfa.2011.11.026 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Léonard, C.: A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst. 34(4), 1533–1574 (2014).  https://doi.org/10.3934/dcds.2014.34.1533 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lott, J.: Some geometric calculations on Wasserstein space. Commun. Math. Phys. 277(2), 423–437 (2008).  https://doi.org/10.1007/s00220-007-0367-3 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mikami, T.: Variational processes from the weak forward equation. Commun. Math. Phys. 135(1), 19–40 (1990)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mikami, T.: Monge’s problem with a quadratic cost by the zero-noise limit of h-path processes. Probab. Theory Relat. Fields 129(2), 245–260 (2004).  https://doi.org/10.1007/s00440-004-0340-4 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mikami, Toshio, Thieullen, Michèle: Duality theorem for the stochastic optimal control problem. Stoch. Process. Appl. 116(12), 1815–1835 (2006).  https://doi.org/10.1016/j.spa.2006.04.014 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mikami, T., Thieullen, M.: Optimal transportation problem by stochastic optimal control. SIAM J. Control Optim. 47(3), 1127–1139 (2008).  https://doi.org/10.1137/050631264 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001).  https://doi.org/10.1081/PDE-100002243 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rüschendorf, L., Thomsen, W.: Closedness of sum spaces and the generalized Schrödinger problem. Theory Prob. Appl. 42(3), 483–494 (1998)CrossRefGoogle Scholar
  24. 24.
    Schrödinger, E.: Über die Umkehrung der Naturgesetze. Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl. 144–153 (1931) (German)Google Scholar
  25. 25.
    Schrödinger, E.: Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quantique. Ann. Inst. Henri Poincaré 2(4), 269–310 (1932). http://www.numdam.org/item?id=AIHP_1932__2_4_269_0. Accessed 26 June 2018 (French)
  26. 26.
    Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003).  https://doi.org/10.1007/b12016 CrossRefzbMATHGoogle Scholar
  27. 27.
    Villani, C.: Optimal Transport: Old and New, Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer Science & Business Media, Berlin (2009).  https://doi.org/10.1007/978-3-540-71050-9 CrossRefGoogle Scholar
  28. 28.
    Yasue, K.: Stochastic calculus of variations. J. Funct. Anal. 41(3), 327–340 (1981).  https://doi.org/10.1016/0022-1236(81)90079-3 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations