Advertisement

Rotating Wave Solutions to Lattice Dynamical Systems I: The Anti-continuum Limit

  • Jason J. BramburgerEmail author
Article

Abstract

Rotating waves are a fascinating feature of a wide array of complex systems, particularly those arising in the study of many chemical and biological processes. With many rigorous mathematical investigations of rotating waves relying on the model exhibiting a continuous Euclidean symmetry, this work is aimed at understanding these nonlinear waves in the absence of such symmetries. Here we will consider a spatially discrete lattice dynamical system of Ginzburg–Landau type and prove the existence of rotating waves in the anti-continuum limit. This result is achieved by providing a link between the work on phase systems stemming from the study of identically coupled oscillators on finite lattices to carefully track the solutions as the size of the lattice grows. It is shown that in the infinite square lattice limit of these phase systems that a rotating wave solution exists, which can be extended to the Ginzburg–Landau system of study here. The results of this work provide a necessary first step in the investigation of rotating waves as solutions to lattice dynamical systems in an effort to understand the dynamics of such solutions outside of the idealized situation where the underlying symmetry of a differential equation can be exploited.

Keywords

Rotating waves Lattice dynamical systems Coupled oscillators 

Notes

Acknowledgements

This work was supported by an Ontario Graduate Scholarship while at the University of Ottawa. The author is very thankful to Benoit Dionne and Victor LeBlanc for their careful reading of the work, correcting errors and making improvements to properly convey the results.

References

  1. 1.
    Barkley, D.: Euclidean symmetry and the dynamics of rotating spiral waves. Phys. Rev. Lett. 72, 164–168 (1994)CrossRefGoogle Scholar
  2. 2.
    Barkley, D., Kevrekidis, I.G.: A dynamical systems approach to spiral wave dynamics. Chaos 4, 453–460 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Beaumont, J., Davidenko, N., Davidenko, J., Jalife, J.: Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core. Biophys. J. 75, 1–14 (1998)CrossRefGoogle Scholar
  4. 4.
    Cahn, J.: Theory of crystal growth and interface motion in crystalline materials. Acta Met. 8, 554–562 (1960)CrossRefGoogle Scholar
  5. 5.
    Cahn, J., Mallet-Paret, J., Van Vleck, E.: Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice. SIAM J. Appl. Math. 59, 455–493 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Charette, L., LeBlanc, V.G.: Lattice symmetry-breaking perturbations for spiral waves. SIAM J. Appl. Dyn. Syst. 13, 1694–1715 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cohen, D., Neu, J., Rosales, R.: Rotating spiral wave solutions of reaction–diffusion equations. SIAM J. Appl. Math. 35, 536–547 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cook, H., de Fontaine, D., Hillard, J.: A model for diffusion of cubic lattices and its application to the early stages of ordering. Acta Met. 17, 765–773 (1969)CrossRefGoogle Scholar
  9. 9.
    Cuevas, J., James, G., Kevrekidis, P.G., Law, K.J.H.: Vortex solutions for the discrete Gross-Pitaevskii equation starting from the anti-continuum limit. Physica D 238, 1422–1431 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cumin, D., Unsworth, C.P.: Generalising the Kuromoto model for the study of neuronal synchronization in the brain. Physica D 226, 181–196 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    DeVille, L., Ermentrout, G.B.: Phase-locked patterns of the Kuramoto model on 3-regular graphs. Chaos 26, 094820 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Elmer, C.E.: Finding stationary fronts for a discrete Nagumo and wave equation; construction. Physica D 218, 11–23 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ermentrout, G.B.: Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators. SIAM J. Appl. Math. 52, 1665–1687 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ermentrout, G.B., Kopell, N.: Frequency plateaus in a chain of weakly coupled oscillators. SIAM J. Math. Anal. 15, 215–237 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ermentrout, G.B., Kopell, N.: Phase transitions and other phenomena in chains of coupled oscillators. SIAM J. Appl. Math. 50, 1014–1052 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ermentrout, G.B., Paullet, J.: Spiral waves in spatially discrete \(\lambda -\omega \) systems. Int. J. Bifur. Chaos 8, 33–40 (1998)CrossRefzbMATHGoogle Scholar
  17. 17.
    Ermentrout, G.B., Paullet, J., Troy, W.: The existence of spiral waves in an oscillatory reaction–diffusion system. SIAM J. Appl. Math. 54, 1386–1401 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ermentrout, G.B., Ren, L.: Monotonicity of phaselocked solutions in chains and arrays of nearest-neighbour coupled oscillators. SIAM J. Appl. Math. 29, 208–234 (1998)CrossRefzbMATHGoogle Scholar
  19. 19.
    Erneux, T., Nicolis, G.: Propagating waves in discrete bistable reaction–diffusion systems. Physica D 67, 237–244 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fife, P., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling wave solutions. Bull. Am. Math. Soc. 81, 1076–1078 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Firth, W.: Optical memory and spatial chaos. Phys. Rev. Lett. 61, 329–332 (1988)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Greenberg, J.: Spiral waves for \(\lambda -\omega \) systems. SIAM J. Appl. Math. 39, 301–309 (1980)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Golubitsky, M., LeBlanc, V., Melbourne, I.: Meandering of the spiral tip: an alternative approach. Nonlinear Sci. 7, 557–586 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gorelova, N.A., Bures, J.: Spiral waves of spreading depression in the isolated chicken retina. J. Neurobiol. 14, 353–363 (1983)CrossRefGoogle Scholar
  25. 25.
    Howard, L., Kopell, N.: Target pattern and spiral solutions to reaction–diffusion equations with more than one space dimension. Adv. Appl. Math. 2, 417–449 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Huang, X., Troy, W.C., Yang, Q., Ma, H., Laing, C.R., Schi, S.J., Yu, J.Y.: Spiral waves in disinhibited mammalian neocortex. J. Neurosci. 24, 9897–9902 (2004)CrossRefGoogle Scholar
  27. 27.
    Hupkes, H.J., Pelinovsky, D., Sandstede, B.: Propagation failure in the discrete nagumo equation. Proc. Am. Math. Soc. 139, 3537–3551 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hwang, S., Kim, T., Lee, K.: Complex-periodic spiral waves in confluent cardiac cell cultures induced by localized inhomogeneities. PNAS 102, 10363–10368 (2005)CrossRefGoogle Scholar
  29. 29.
    Keener, J.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Keener, J., Sneyd, J.: Mathematical Physiology, Interdisciplinary Applied Mathematics 8. Springer, New York (1998)zbMATHGoogle Scholar
  31. 31.
    Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, New York (1984)CrossRefzbMATHGoogle Scholar
  32. 32.
    LeBlanc, V.G.: Rotational symmetry-breaking for spiral waves. Nonlinearity 15, 1179–1203 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    LeBlanc, V.G., Wulff, C.: Translational symmetry-breaking for spiral waves. J. Nonlinear Sci. 10, 569–601 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Paullet, J., Ermentrout, G.B.: Stable rotating waves in two-dimensional discrete active media. SIAM J. Appl. Math. 54, 1720–1744 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Santos, E., Schöll, M., Sánchez-Porras, R., Dahlem, M.A., Silos, H., Unterberg, A., Dickhaus, H., Sakowitz, O.W.: Radial, spiral and reverberating waves of spreading depolarization occur in the gyrencephalic brain. Neuroimage 99, 244–255 (2014)CrossRefGoogle Scholar
  36. 36.
    Sandstede, B., Scheel, A., Wulff, C.: Center manifold reductions for spiral waves. Comptes R. Acad. Sci. 324, 153–158 (1997)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Sandstede, B., Scheel, A., Wulff, C.: Dynamics of spiral waves on unbounded domains using center-manifold reductions. J. Differ. Equ. 141, 122–149 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Sandstede, B., Scheel, A., Wulff, C.: Bifurcations and dynamics of spiral waves. J. Nonlinear Sci. 9, 439–478 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Udeigwe, L.C., Ermentrout, G.B.: Waves and patterns on regular graphs. SIAM J. Appl. Dyn. Syst. 14, 1102–1129 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Winfree, A.T.: The Geometry of Biological Time, Biomathematics 8. Springer, New York (1980)CrossRefzbMATHGoogle Scholar
  41. 41.
    Winfree, A.T.: Spiral waves of chemical activity. Science 175, 634–636 (1972)CrossRefGoogle Scholar
  42. 42.
    Zinner, B.: Existence of traveling wavefront solutions for the discrete Nagumo equation. J. Differ. Equ. 96, 1–27 (1992)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations