Journal of Dynamics and Differential Equations

, Volume 31, Issue 3, pp 1495–1523 | Cite as

A Delay Differential Equation with a Solution Whose Shortened Segments are Dense

  • Hans-Otto WaltherEmail author


We construct a delay functional \(d_Y\) on an infinite-dimensional subset \(Y\subset C^1([-r,0],\mathbb {R})\), \(r>1\), so that the delay differential equation
$$\begin{aligned}x'(t)=-\alpha \,x(t-d_Y(x_t)),\quad \alpha >0,\end{aligned}$$
has a solution whose short segments\(x_t|[-1,0]\) are dense in \(C^1([-1,0],\mathbb {R})\). This implies complicated behaviour of the trajectory \(t\mapsto x_t\) in \( C^1([-r,0],\mathbb {R})\).


Delay differential equation State-dependent delay Dense orbit 

Mathematics Subject Classification

34 K 23 


  1. 1.
    Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M., Walther, H.O.: Delay Equations: Functional-, Complex- and Nonlinear Analysis. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  2. 2.
    Hale, J.K.: Functional Differential Equations. Springer, New York (1971)CrossRefzbMATHGoogle Scholar
  3. 3.
    Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)CrossRefzbMATHGoogle Scholar
  4. 4.
    Hartung, F., Krisztin, T., Wu, J., Walther, H.O.: Functional differential equations with state-dependent delay: theory and applications. In: Canada, A., Drabek, P., Fonda, A. (eds.) Handbook of Differential Equations, Ordinary Differential Equations, vol. 3, pp. 435–545. Elsevier Science B.V., Amsterdam (2006)CrossRefGoogle Scholar
  5. 5.
    Lani-Wayda, B., Walther, H.O.: A Shilnikov phenomenon due to state-dependent delay, by means of the fixed point index. J. Dyn. Differ. Equ. 28, 627–688 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Mallet-Paret, J., Nussbaum, R.D.: Boundary layer phenomena for differential-delay equations with state-dependent time lags I. Arch. Ration. Mech. Anal. 120, 99–146 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Nishiguchi, J.: A necessary and sufficient condition for well-posedness of initial value problems for functional differential equations. J. Differ. Equ. 263, 3491–3532 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Steinlein, H., Walther, H.O.: Hyperbolic sets, transversal homoclinic trajectories, and symbolic dynamics for \(C^1\)-maps in Banach spaces. J. Dyn. Differ. Equ. 2, 325–365 (1990)CrossRefzbMATHGoogle Scholar
  9. 9.
    Walther, H.O.: On instability, \(\omega \)-limit sets and periodic solutions of nonlinear autonomous differential delay equations. In: Peitgen, H.O., Walther, H.O. (eds.) Functional Differential Equations and Approximation of Fixed Points, Lecture Notes in Mathematics, vol. 730, pp. 489–503. Springer, Heidelberg (1979)CrossRefGoogle Scholar
  10. 10.
    Walther, H.O.: The solution manifold and \(C^1\)-smoothness of solution operators for differential equations with state-dependent delay. J. Differ. Equ. 195, 46–65 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Walther, H.O.: A homoclinic loop generated by variable delay. J. Dyn. Differ. Equ. 27, 1101–1139 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Walther, H.O.: Complicated histories close to a homoclinic loop generated by variable delay. Adv. Differ. Equ. 19, 911–946 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Wright, E.M.: A non-linear difference-differential equation. J. Reine Angew. Math. 194, 66–87 (1955)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität GießenGiessenGermany

Personalised recommendations