Advertisement

Journal of Dynamics and Differential Equations

, Volume 31, Issue 3, pp 1301–1325 | Cite as

Global Classical Solutions, Stability of Constant Equilibria, and Spreading Speeds in Attraction–Repulsion Chemotaxis Systems with Logistic Source on \(\mathbb {R}^{N}\)

  • Rachidi B. Salako
  • Wenxian ShenEmail author
Article
  • 105 Downloads

Abstract

In this paper, we consider the following chemotaxis systems of parabolic–elliptic–elliptic type on \(\mathbb {R}^{N}\),
$$\begin{aligned} {\left\{ \begin{array}{ll} u_{t}=\Delta u -\chi _1\nabla ( u\nabla v_1)+\chi _2 \nabla (u\nabla v_2 )+ u(a -b u), \qquad \ x\in {\mathbb R}^N,\ t>0, \\ 0=(\Delta - \lambda _1 I)v_1+ \mu _1 u, \qquad \ x\in {\mathbb R}^N,\ t>0, \\ 0=(\Delta - \lambda _2 I)v_2+ \mu _2 u, \qquad \ x\in {\mathbb R}^N,\ t>0, \\ u(\cdot ,0)=u_{0}, \qquad x\in \mathbb {R}^N , \end{array}\right. } \end{aligned}$$
where \( \chi _{i}\ge 0,\ \lambda _i> 0,\ \mu _i>0\) (\(i=1,2\)) and \(\ a> 0,\ b> 0\) are constant real numbers, and N is a positive integer. First, under some conditions on the parameters \(\chi _i,\mu _i,\lambda _i, a, b\) and N, we prove the global existence and boundedness of classical solutions \((u(x,t;u_0),v_1(x,t;u_0),v_2(x,t;u_0))\) for nonnegative, bounded, and uniformly continuous initial functions \(u_0(x)\). Next, we explore the asymptotic stability of the constant equilibrium \((\frac{a}{b},\frac{\mu _1}{\lambda _1}\frac{a}{b},\frac{\mu _2}{\lambda _2}\frac{a}{b})\) and prove under some further assumption on the parameters that, for every strictly positive initial \(u_0(x)\),
$$\begin{aligned} \lim _{t\rightarrow \infty }\left[ \Vert u(\cdot ,t;u_0)-\frac{a}{b}\Vert _{\infty }+\Vert \lambda _{1}v_{1}(\cdot ,t;u_0)-\frac{a}{b}\mu _1\Vert _{\infty }+\Vert \lambda _{2}v_{2}(\cdot ,t;u_0)-\frac{a}{b}\mu _2\Vert _{\infty }\right] =0. \end{aligned}$$
Finally, we investigate the spreading properties of the global solutions with compactly supported initial functions. We show that under some conditions on the parameters, there are two positive numbers \(0<c^*_-(\chi _1,\mu _1,\lambda _1,\chi _2,\mu _2,\lambda _2)\le c^*_+(\chi _1,\mu _1,\lambda _1,\chi _2,\mu _2,\lambda _2)\) such that for every nonnegative initial function \(u_0(x)\) with nonempty and compact support, we have
$$\begin{aligned} \lim _{t\rightarrow \infty }\left[ \sup _{|x|\le ct}|u(x,t;u_0)-\frac{a}{b}| {+} \sup _{|x|\le ct}|\lambda _1 v_1(x,t;u_0)-\frac{a}{b}\mu _1| {+} \sup _{|x|\le ct}|\lambda _2 v_2(x,t;u_0)-\frac{a}{b}\mu _2|\right] =0 \end{aligned}$$
whenever \(0\le c< c^*_-(\chi _1,\mu _1,\lambda _1,\chi _2,\mu _2,\lambda _2)\), and
$$\begin{aligned} \lim _{t\rightarrow \infty }\left[ \sup _{|x|\ge ct}|u(x,t;u_0)| + \sup _{|x|\ge ct}| v_1(x,t;u_0)| + \sup _{|x|\ge ct}|v_2(x,t;u_0)|\right] =0 \end{aligned}$$
whenever \(c>c^*_+(\chi _1,\mu _1,\lambda _1,\chi _2,\mu _2,\lambda _2)\). Furthermore we show that
$$\begin{aligned}\lim _{(\chi _1,\chi _2)\rightarrow (0,0)}c^*_-(\chi _1,\mu _1,\lambda _1,\chi _2,\mu _2,\lambda _2)=\lim _{(\chi _1,\chi _2)\rightarrow (0,0)}c^*_+(\chi _1,\mu _1,\lambda _1,\chi _2,\mu _2,\lambda _2)=2\sqrt{a}. \end{aligned}$$

Keywords

Parabolic–elliptic chemotaxis system Logistic source Classical solution Local existence Global existence Asymptotic stability Spreading speeds 

Mathematics Subject Classification

35B35 35B40 35K57 35Q92 92C17 

Notes

Acknowledgements

The authors would like to thank the referee for valuable comments and suggestions which improved the presentation of this paper considerably.

References

  1. 1.
    Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berestycki, H., Hamel, F., Nadin, G.: Asymptotic spreading in heterogeneous diffusive excita media. J. Funct. Anal. 255, 2146–2189 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems, I-periodic framework. J. Eur. Math. Soc. 7, 172–213 (2005)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems, II-general domains. J. Am. Math. Soc. 23(1), 1–34 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berestycki, H., Nadin, G.: Asymptotic spreading for general heterogeneous Fisher-KPP type equations (2015). https://hal.archives-ouvertes.fr/hal-01171334v2
  6. 6.
    Diaz, J.I., Nagai, T.: Symmetrization in a parabolic–elliptic system related to chemotaxis. Adv. Math. Sci. Appl. 5, 659–680 (1995)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Diaz, J.I., Nagai, T., Rakotoson, J.-M.: Symmetrization techniques on unbounded domains: application to a chemotaxis system on \(\mathbb{R}^{N}\). J. Differ. Equ. 145, 156–183 (1998)CrossRefzbMATHGoogle Scholar
  8. 8.
    Espejoand, E., Suzuki, T.: Global existence and blow-up for a system describing the aggregation of microglia. Appl. Math. Lett. 35, 29–34 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fisher, R.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)CrossRefzbMATHGoogle Scholar
  10. 10.
    Freidlin, M.: On wave front propagation in periodic media. In: Pinsky, M. (ed.) Stochastic analysis and applications. Advances in probability and related topics, vol. 7, pp. 147–166 (1984)Google Scholar
  11. 11.
    Freidlin, M., Gärtner, J.: On the propagation of concentration waves in periodic and ramdom media. Sov. Math. Dokl. 20, 1282–1286 (1979)Google Scholar
  12. 12.
    Friedman, A.: Partial Differential Equation of Parabolic Type. Prentice-Hall Inc, Englewood Cliffs (1964)zbMATHGoogle Scholar
  13. 13.
    Galakhov, E., Salieva, O., Tello, J.I.: On a parabolic–elliptic system with chemotaxis and logistic type growth. J. Differ. Equ. 261(8), 4631–4647 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hale, Jack K.: Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs, vol. 25. American Mathematical Society, Providence (1988)Google Scholar
  15. 15.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (1981)CrossRefzbMATHGoogle Scholar
  16. 16.
    Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58(1–2), 183–217 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hillen, T., Painter, K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26(4), 280–301 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hillen, T., Potapov, A.: The one-dimensional chemotaxis model: global existence and asymptotic profile. Math. Methods Appl. Sci. 27(15), 1783–1801 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Horstmann, D.: From 1970 until present: the KellerSegel model in chemotaxis and its consequences. Jahresber. Dtsch. Math. Ver. 105(2003), 103–165 (1970)zbMATHGoogle Scholar
  20. 20.
    Horstmann, D.: Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multispecies chemotaxis models in the presence of attraction and repulsion between competitive interacting species. J. Nonlinear Sci. 21(2), 231–270 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jin, H.Y.: Boundedness of the attraction–repulsion Keller–Segel system. J. Math. Anal. Appl. 422(2), 1463–1478 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kanga, K., Steven, A.: Blowup and global solutions in a chemotaxis-growth system. Nonlinear Anal. 135, 57–72 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Keller, E.F., Segel, L.A.: A Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)CrossRefzbMATHGoogle Scholar
  25. 25.
    Kolmogorov, A., Petrowsky, I., Piscunov, N.: A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Bjul. Moskovskogo Gos. Univ. 1, 1–26 (1937)Google Scholar
  26. 26.
    Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60(1), 1–40 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lin, K., Mu, C., Gao, Y.: Boundedness and blow up in the higher-dimensional attraction–repulsion chemotaxis with non-linear diffusion. J. Differ. Equ. 261, 4524–4572 (2016)CrossRefzbMATHGoogle Scholar
  28. 28.
    Liang, X., Zhao, X.-Q.: Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funct. Anal. 259, 857–903 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Liu, J., Wang, Z.A.: Classical solutions and steady states of an attraction–repulsion chemotaxis in one dimension. J. Biol. Dyn. 6(suppl. 1), 31–41 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Liu, P., Shi, J., Wang, Z.A.: Pattern formation of the attraction-repulsion Keller–Segel system. Discrete Contin. Dyn. Syst. Ser. B 18(10), 2597–2625 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogilner, A.: Chemotactic signaling, microglia, and Alzheimers disease senile plaques: is there a connection? Bull. Math. Biol. 65(4), 693–730 (2003)CrossRefzbMATHGoogle Scholar
  32. 32.
    Nadin, G.: Traveling fronts in space-time periodic media. J. Math. Pures Anal. 92, 232–262 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcialaj Ekvacioj 40, 411–433 (1997)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Nolen, J., Rudd, M., Xin, J.: Existence of KPP fronts in spatially-temporally periodic adevction and variational principle for propagation speeds. Dyn. PDE 2, 1–24 (2005)zbMATHGoogle Scholar
  35. 35.
    Nolen, J., Xin, J.: Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle. Discrete Contin. Dyn. Syst. 13, 1217–1234 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Salako, R., Shen, W.: Global existence and asymptotic behavior of classical solutions to a parabolic–elliptic chemotaxis system with logistic source on \(\mathbb{R}^{N}\). J. Differ. Equ. 262(11), 5635–5690 (2017)CrossRefzbMATHGoogle Scholar
  37. 37.
    Salako, R., Shen, W.: Spreading speeds and traveling waves of a parabolic–elliptic chemotaxis system with logistic source on \({\mathbb{R}}^N\). arXiv:1609.05387. (Preprint)
  38. 38.
    Sell, George R., You, Yuncheng: Dynamics of Evolutionary Equations. Applied Mathematical Sciences, vol. 143. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  39. 39.
    Shen, W.: Variational principle for spatial spreading speeds and generalized propgating speeds in time almost and space periodic KPP models. Trans. Am. Math. Soc. 362, 5125–5168 (2010)CrossRefzbMATHGoogle Scholar
  40. 40.
    Shen, W.: Existence of generalized traveling waves in time recurrent and space periodic monostable equations. J. Appl. Anal. Comput. 1, 69–93 (2011)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Sugiyama, Y.: Global existence in sub-critical cases and finite time blow up in super critical cases to degenerate Keller–Segel systems. Differ. Integral Equ. 19(8), 841–876 (2006)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Sugiyama, Y., Kunii, H.: Global existence and decay properties for a degenerate Keller–Segel model with a power factor in drift term. J. Differ. Equ. 227, 333–364 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32, 849–877 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Wang, Y.: Global bounded weak solutions to a degenerate quasilinear attraction repulsion chemotaxis system with rotation. Comput. Math. Appl. 72, 2226–2240 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Wang, Y., Xiang, Zhaoyin: Boundedness in a quasilinear 2D parabolic–parabolic attraction–repulsion chemotaxis system. Discrete Contin. Dyn. Syst. Ser. B 21(6), 1953–1973 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Wang, L., Mu, C., Zheng, P.: On a quasilinear parabolic–elliptic chemotaxis system with logistic source. J. Differ. Equ. 256, 1847–1872 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Weinberger, H.F.: Long-time behavior of a class of biology models. SIAM J. Math. Anal. 13, 353–396 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Weinberger, H.F.: On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45, 511–548 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Winkler, M.: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening. J. Differ. Equ. 257(4), 1056–1077 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Winkler, M.: How far can chemotactic cross-diffusion enforce exceeding carrying capacities? J. Nonlinear Sci. 24, 809–855 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Yokota, T., Yoshino, N.: Existence of solutions to chemotaxis dynamics with logistic source, Discrete Continuous Dynamical Systems 2015, dynamical systems, differential equations and applications. In: 10th AIMS Conference. Suppl, pp. 1125–1133Google Scholar
  55. 55.
    Zhang, Q., Li, Y.: An attraction–repulsion chemotaxis system with logistic source. ZAMMZ Angew. Math. Mech. 96(5), 570–584 (2016). doi: 10.1002/zamm.201400311 MathSciNetCrossRefGoogle Scholar
  56. 56.
    Zheng, P., Mu, C., Hu, X.: Boundedness in the higher dimensional attractionrepulsion chemotaxis-growth system. Comput. Math. Appl. 72, 2194–2202 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Zheng, P., Mu, C., Hu, X., Tian, Y.: Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source. J. Math. Anal. Appl. 424, 509–522 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Zlatoš, A.: Transition fronts in inhomogeneous Fisher-KPP reaction-diffusion equations. J. Math. Pures Appl. 98(1(9)), 89–102 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsAuburn UniversityAuburnUSA

Personalised recommendations