Journal of Dynamics and Differential Equations

, Volume 31, Issue 3, pp 1129–1139 | Cite as

Bounding Solutions of a Forced Oscillator

  • Kenneth R. MeyerEmail author
  • Dieter S. Schmidt


We give an alternate proof of a theorem in Wang and You (Z Angew Math Phys 47: 943–952, 1996) which shows that all solutions are bounded for a periodically forced nonlinear oscillator. Our proof relies on constructing an analytic change of variables by a convergent Lie series transformation to simplify the system so that the period map has large invariant curves by Moser’s theorem.


Nonlinear oscillator Bounded solutions Invariant curve Twist map 

Mathematics Subject Classification

34C15 34K12 37E40 70H08 


  1. 1.
    Chicone, C.: Ordinary Differential Equations with Applications. Springer, New York (1999)zbMATHGoogle Scholar
  2. 2.
    Deprit, A.: Canonical transformation depending on a small parameter. Celest. Mech. 72, 173–79 (1969)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Dieckerhoff, R., Zehnder, E.: Boundedness of solutions via twist theorem. Ann. Scuola. Norm. Super. Pisa Cl. Sci 14, 79–95 (1987)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Laederich, S., Levi, M.: Invariant curves and time dependent potentials. Ergod. Theory Dyn. Syst. 11, 365–378 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Levi, M.: Quasiperiodic motions in superquadratic time-dependent potentials. Commun. Math. Phys. 143, 43–83 (1991)CrossRefzbMATHGoogle Scholar
  6. 6.
    Liu, B.: On Littlewood’s boundedness problem for sublinear Duffing equations. Trans. Am. Math. Soc. 353(4), 1567–1585 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Liu, B.: Boundedness for solutions of nonlinear periodic differential equations via Moser’s twist theorem. Acta Math. Sin. (N.S.) 8, 91–96 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Morris, G.R.: A class of boundedness in Littlewood’s problem on oscillatory differential equations. Bull. Austral. Math. Soc. 14, 71–93 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Meyer, K.R.: A Lie transform tutorial—II. Computer aided proofs in analysis. In: Meyer K.R., Schmidt, D.S. (eds.) IMA Volumes in Mathematics and Its Applications, vol. 28. Springer, New York (1991)Google Scholar
  10. 10.
    Meyer, K.R., Hall, G.R., Offin, D.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 2nd edn. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Moser, J.: On invariant curves of area-preserving mapping of the annulus. Nachr. Akad. Wiss Gottingen Math. Phys. 2, 1–20 (1962)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Wang, Y., You, J.: Boundedness of solutions for polynomial potential with \(C^2\) time dependent coefficients. Z. Angew Math. Phys. 47, 943–952 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1927)zbMATHGoogle Scholar
  14. 14.
    Yuan, X.: Lagrange stability for Duffing-type equations. J. Differ. Equ. 160(1), 94–117 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of Computer ScienceUniversity of CincinnatiCincinnatiUSA

Personalised recommendations