Advertisement

Entropy for Symbolic Dynamics with Overlapping Alphabets

  • Fabio Drucker
  • David Richeson
  • Jim Wiseman
Article

Abstract

We consider shift spaces in which elements of the alphabet may overlap nontransitively. We define a notion of entropy for such spaces and show that it is equal to a limit of entropies of standard (non-overlapping) shifts when the underlying shift is of finite type. When a shift space with overlaps arises as a model for a discrete dynamical system with a finite set of overlapping neighborhoods, the entropy gives a lower bound for the topological entropy of the dynamical system.

Keywords

Symbolic dynamics Topological entropy Subshifts of finite type Non-unique itineraries  

Mathematics Subject Classification

Primary 37B10 37B40 Secondary 37B30 37D05 37C15 

Notes

Acknowledgments

Jim Wiseman was supported by the Holder Fund for Faculty Innovation.

References

  1. 1.
    Adler, R.L.: Symbolic dynamics and Markov partitions. Bull. Am. Math. Soc. (N.S.) 35(1), 1–56 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arioli, G.: Periodic orbits, symbolic dynamics and topological entropy for the restricted 3-body problem. Commun. Math. Phys. 231(1), 1–24 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics, vol. 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia. Revised reprint of the 1979 original (1994)Google Scholar
  4. 4.
    Carbinatto, M., Kwapisz, J., Mischaikow, K.: Horseshoes and the Conley index spectrum. Ergodic Theory Dyn. Syst. 20(2), 365–377 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Day, S., Frongillo, R., Treviño, R.: Algorithms for rigorous entropy bounds and symbolic dynamics. SIAM J. Appl. Dyn. Syst. 7(4), 1477–1506 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Easton, R.: Isolating blocks and symbolic dynamics. J. Differ. Equ. 17, 96–118 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Easton, R.: Orbit Structure Near Trajectories Biasymptotic to Invariant Tori, Classical Mechanics and Dynamical Systems (Medford, Mass. 1979) Lecture Notes in Pure and Applied Mathematics, vol. 70, pp. 55–67. Dekker, New York (1981)Google Scholar
  8. 8.
    Franks, J., Richeson, D.: Shift equivalence and the Conley index. Trans. Am. Math. Soc. 352(7), 3305–3322 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gidea, M.: Leray functor and orbital Conley index for non-invariant sets. Discret. Contin. Dyn. Syst. 5(3), 617–630 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gidea, M.: Non-smooth dynamical systems that exhibit hyperbolic behavior. Rev. Roum. Math. Pures Appl. 45(4), 631–646 (2001)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Gidea, M., Robinson, C.: Symbolic Dynamics for Transition Tori, II. New Advances in Celestial Mechanics and Hamiltonian Systems, pp. 95–108. Kluwer/Plenum, New York (2004)Google Scholar
  12. 12.
    Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology, Applied Mathematical Sciences, vol. 157. Springer, New York (2004)zbMATHGoogle Scholar
  13. 13.
    Kwapisz, J.: Cocyclic subshifts. Math. Z. 234(2), 255–290 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kwapisz, J.: Transfer operator, topological entropy and maximal measure for cocyclic subshifts. Ergodic Theory Dyn. Syst. 24(4), 1173–1197 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  16. 16.
    Mischaikow, K., Mrozek, K.: Chaos in the Lorenz equations: a computer-assisted proof. Bull. Am. Math. Soc. (N.S.) 32(1), 66–72 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mrozek, M.: The Conley Index and Rigorous Numerics, Non-linear Analysis and Boundary Value Problems for Ordinary Differential Equations (Udine), CISM Courses and Lectures, vol. 371. Springer, Vienna (1996)Google Scholar
  18. 18.
    Richeson, D., Wiseman, J.: Symbolic dynamics for nonhyperbolic systems. Proc. Am. Math. Soc. 138, 4373–4385 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Robinson, C.: Dynamical Systems, Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)Google Scholar
  20. 20.
    Sossinsky, A.B.: Tolerance space theory and some applications. Acta Appl. Math. 5(2), 137–167 (1986)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Szymczak, A.: The Conley index for decompositions of isolated invariant sets. Fund. Math. 148(1), 71–90 (1995)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Szymczak, A.: The Conley index and symbolic dynamics. Topology 35(2), 287–299 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    van den Berg, J.B., Vandervorst, R.C., Wójcik, W.: Chaos in orientation reversing twist maps of the plane. Topol. Appl. 154(13), 2580–2606 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wiseman, J.: Detection of renewal system factors via the Conley index. Trans. Am. Math. Soc 354(12), 4953–4968 (2002). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wiseman, J.: The square of a map, symbolic dynamics and the Conley index. Rocky Mountain J. Math. 37(1), 327–342 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Wójcik, K., Zgliczyński, P.: Isolating segments, fixed point index, and symbolic dynamics: III. Applications. J. Differ. Equ. 183(1), 262–278 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zgliczyński, P.: Computer assisted proof of chaos in the Rössler equations and in the Hénon map. Nonlinearity 10(1), 243–252 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zgliczyński, P., Gidea, M.: Covering relations for multidimensional dynamical systems. J. Differ. Equ. 202(1), 32–58 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Dickinson CollegeCarlisleUSA
  2. 2.Agnes Scott CollegeDecaturUSA

Personalised recommendations