Generic Hamiltonian Dynamics



In this paper we contribute to the generic theory of Hamiltonians by proving that there is a \(C^2\)-residual \({\mathcal {R}}\) in the set of \(C^2\) Hamiltonians on a closed symplectic manifold \(M\), such that, for any \(H\in {\mathcal {R}}\), there is a full measure subset of energies \(e\) in \(H(M)\) such that the Hamiltonian level \((H,e)\) is topologically mixing; moreover these level sets are homoclinic classes.


Hamiltonian vector field Topological transitivity Topological mixing Pseudo-orbits 

Mathematics Subject Classification

Primary 37C20 37C10 Secondary 37J10 



MB was partially supported by National Funds through FCT (Fundação para a Ciência e a Tecnologia) Project PEst-OE/MAT/UI0212/2011. CF was supported by FCT - Fundação para a Ciência e a Tecnologia SFRH/BD/33100/2007. JR was partially supported by FCT - Fundação para a Ciência e a Tecnologia through the project CMUP: PTDC/MAT/099493/2008. PV was partially supported by a CNPq-Brazil postdoctoral fellowship at University of Porto.


  1. 1.
    Abdenur, F., Avila, A., Bochi, J.: Robust transitivity and topological mixing for \(C^1\)-flows. Proc. Am. Math. Soc. 132(3), 699–705 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Abdenur, F., Crovisier, S.: Transitivity and Topological Mixing for \(C^1\) Diffeomorphisms. Essays in Mathematics and its Applications. Springer, Heidelberg (2012)MATHGoogle Scholar
  3. 3.
    Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. The Benjamin/Cummings Publishing Company, Philadelphia (1980). Advanced Book ProgramGoogle Scholar
  4. 4.
    Ambrose, W., Kakutani, S.: Structure and continuity of measurable flows. Duke Math. J. 9, 25–42 (1942)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Arnaud, M.-C., Bonatti, C., Crovisier, S.: Dynamique sympletiques génériques. Ergod. Theory Dyn. Syst. 25(5), 1401–1436 (2005)CrossRefGoogle Scholar
  6. 6.
    Bessa, M.: The Lyapunov exponents of generic zero divergence-free three-dimensional vector fields. Ergod. Theory Dyn. Syst. 27(6), 1445–1472 (2007)MathSciNetMATHGoogle Scholar
  7. 7.
    Bessa, M.: A generic incompressible flow is topological mixing. C. R. Acad. Sci. Paris Ser. I 346, 1169–1174 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bessa, M., Lopes Dias, J.: Generic dynamics of 4-dimensional \(C^2\) Hamiltonian systems. Commun. Math. Phys 281, 597–619 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bessa, M., Lopes, J.: Dias, Hamiltonian elliptic dynamics on symplectic 4-manifolds. Proc. Am. Math. Soc. 137, 585–592 (2009)CrossRefMATHGoogle Scholar
  10. 10.
    Bonatti, C., Crovisier, S.: Récurrence et généricité. Invent. Math. 158(1), 33–104 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Markus, L., Meyer, K.R.: Generic Hamiltonian Dynamical Systems are neither Integrable nor Ergodic. Memoirs of the American Mathematical Society 144. American Mathematical Society, Providence (1974)MATHGoogle Scholar
  12. 12.
    Newhouse, S.: Quasi-elliptic periodic points in conservative dynamical systems. Am. J. Math. 99(5), 1061–1087 (1977)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Pugh, C., Robinson, C.: The \(C^1\) closing lemma, including Hamiltonians. Ergod. Theory Dyn. Syst. 3, 261–313 (1983)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Robinson, C.: Generic properties of conservative systems I and II. Am. J. Math. 92, 562–603 (1970)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Shub, M.: Global Stability of Dynamical Systems. Springer, New York (1987)CrossRefMATHGoogle Scholar
  16. 16.
    Wen, L., Xia, Z.: \(C^1\) connecting lemmas. Trans. Am. Math. Soc. 352, 5213–5230 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Yoccoz, J.C.: Travaux de Herman sur les tores invariants. Astérisque 206 Exp: 754. 4, 311–344 (1992)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade da Beira InteriorCovilhãPortugal
  2. 2.Departamento de MatemáticaUniversidade do PortoPortoPortugal
  3. 3.Departamento de MatemáticaUniversidade Federal da BahiaSalvadorBrazil
  4. 4.CMUPUniversity of PortoPortoPortugal

Personalised recommendations