Journal of Dynamics and Differential Equations

, Volume 24, Issue 3, pp 427–481 | Cite as

Continuity of Dynamical Structures for Nonautonomous Evolution Equations Under Singular Perturbations

  • José M. ArrietaEmail author
  • Alexandre N. Carvalho
  • José A. Langa
  • Aníbal Rodriguez-Bernal


In this paper we study the continuity of invariant sets for nonautonomous infinite-dimensional dynamical systems under singular perturbations. We extend the existing results on lower-semicontinuity of attractors of autonomous and nonautonomous dynamical systems. This is accomplished through a detailed analysis of the structure of the invariant sets and its behavior under perturbation. We prove that a bounded hyperbolic global solutions persists under singular perturbations and that their nonlinear unstable manifold behave continuously. To accomplish this, we need to establish results on roughness of exponential dichotomies under these singular perturbations. Our results imply that, if the limiting pullback attractor of a nonautonomous dynamical system is the closure of a countable union of unstable manifolds of global bounded hyperbolic solutions, then it behaves continuously (upper and lower) under singular perturbations.


Nonautonomous dynamical systems Hyperbolic global bounded solutions Unstable manifolds Dichotomy Singular perturbations Attractors Lower semicontinuity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abreu E.A.M., Carvalho A.N.: Lower semicontinuity of attractors for parabolic problems with Dirichlet boundary conditons in varying domains. Mat. Contemp. 27, 37–51 (2004)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Arrieta J.M., Carvalho A.N.: Abstract parabolic problems with critical nonlinearities and applications to Navier–Stokes and heat equations. Trans. Am. Math. Soc. 352, 285–310 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arrieta J.M., Carvalho A.N.: Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain. J. Differ. Equ. 199, 143–178 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Arrieta J.M., Carvalho A.N., Rodriguez-Bernal A.: Attractors of parabolic problems with nonlinear boundary conditions. Uniform bounds. Commun. Partial Differ. Equ. 25(1–2), 1–37 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Arrieta J.M., Carvalho A.N., Lozada-Cruz G.: Dynamics in dumbbell domains II. The limiting problem. J. Differ. Equ. 247, 174–202 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Arrieta J.M., Carvalho A.N., Lozada-Cruz G.: Dynamics in dumbbell domains III. Continuity of attractors. J. Differ. Equ. 247, 225–259 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Babin A.V., Vishik M.I.: Attractors in Evolutionary Equations Studies in Mathematics and its Applications, vol. 25. North-Holland Publishing Co., Amsterdam (1992)Google Scholar
  8. 8.
    Bruschi S.M., Carvalho A.N., Cholewa J.W., Dłotko T.: Uniform exponential dychotomy and continuity of attractors for singularly perturbed damped wave equations. J. Dyn. Diff. Equ. 18(3), 767–814 (2006)zbMATHCrossRefGoogle Scholar
  9. 9.
    Carbone V.L., Carvalho A.N., Schiabel-Silva K.: Continuity of attractors for parabolic problems with localized large diffusion. Nonlinear Anal. Theory Methods Appl. 68(3), 515–535 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Carvalho, A.N., Cholewa, J.W., Dlotko, T.: Equi-exponential attraction and rate of convergence of attractors for singularly perturbed evolution equations, submitted for publicationGoogle Scholar
  11. 11.
    Carvalho A.N., Langa J.A.: The existence and continuity of stable and unstable manifolds for semilinear problems under nonautonomous perturbation in Banach spaces. J. Differ. Equ. 233(2), 622–653 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Carvalho A.N., Dlotko T.: Dynamics of the viscous Cahn–Hilliard equation. J. Math. Anal. Appl. 344, 703–725 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Carvalho A.N., Langa J.A.: An extension of the concept of gradient systems which is stable under perturbation. J. Differ. Equ. 246(7), 2646–2668 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Carvalho A.N., Langa J.A., Robinson J.C.: Lower semicontinuity of attractors for nonautonomous dynamical systems. Ergod. Th. Dynam. Sys. 29, 1765–1780 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Carvalho A.N., Langa J.A., Robinson J.C.: On the continuity of pullback attractors for evolutions processes. Nonlinear Anal. TMA 71(5–6), 1812–1824 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Carvalho A.N., Langa J.A., Robinson J.C., Suárez A.: Characterization of nonautonomous attractors of a perturbed gradient system. J. Differ. Equ. 236(2), 570–603 (2007)zbMATHCrossRefGoogle Scholar
  17. 17.
    Carvalho A.N., Langa J.A., Robinson J.C.: Attractors for infinite-dimensional nonautonomous dynamical systems. Springer, New York (2012)Google Scholar
  18. 18.
    Carvalho A.N., Piskarev S.: A general approximation scheme for attractors of abstract parabolic problems. Numer. Funct. Anal. Optim. 27(7–8), 785–829 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Chepyzhov V.V., Vishik M.I.: Attractors for Equations of Mathematical Physics. Vol.49, AMS Colloquium Publications, Providence (2002)Google Scholar
  20. 20.
    Efendiev M., Zelik S.: The regular attractor for the reaction-diffusion system with a nonlinearity rapidly oscillating in time and its averaging. Adv. Differ. Equ. 8(6), 673–732 (2003)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Hale J.K.: Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs Number, vol. 25. American Mathematical Society, Providence (1988)Google Scholar
  22. 22.
    Hale J.K., Raugel G.: Lower semicontinuity of attractors of gradient systems and applications. Ann. Mat. Pura Appl. 154(4), 281–326 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Hale J.K., Raugel G.: Lower semicontinuity of the attractor for a singularly perturbed hyperbolic equation. J. Dyn. Differ. Equ. 4(1), 19–67 (1990)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hale J.K., Koçak H.: Dynamics and Bifurcations, Texts in Applied Mathematics, vol. 3. Springer, New York (1991)CrossRefGoogle Scholar
  25. 25.
    Hale J.K., Raugel G.: A reaction-diffusion equation on a thin L-shaped domain. Proc. R. Soc. Edinb. Sect. A 125(2), 283–327 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations, vol 840. Lecture Notes in Mathematics. Springer, Berlin (1981)Google Scholar
  27. 27.
    Henry D.: Exponential dichotomies, the shadowing lemma and homoclinic orbits in Banach Spaces. Resenhas IME-USP 1, 381–401 (1994)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Henry, D.: Evolution Equations in Banach Spaces, Dan Henry’s Manuscripts, Publicações do IME-USP, ISBN 85-7314-033-X, (2006)
  29. 29.
    Li D., Kloeden P.E.: Equi-attraction and the continuous dependence of attractors on parameters. Glasg. Math. J. 46(1), 131–141 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Ladyzhenskaya O.A.: Attractors for Semigroups and Evolution Equations. Leizioni Lincee, Cambridge University Press, Campridge (1991)zbMATHCrossRefGoogle Scholar
  31. 31.
    Langa J.A., Robinson J.C., Suárez A.: Stability, instability, and bifurcation phenomena in nonautonomous differential equations. Nonlinearity 15(3), 887–903 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Langa J.A., Robinson J.C., Suárez A., Vidal-López A.: The stability of attractors for nonautonomous perturbations of gradient-like systems. J. Differ. Equ. 234(2), 607–625 (2007)zbMATHCrossRefGoogle Scholar
  33. 33.
    Langa J.A., Robinson J.C., Rodríguez-Bernal A., Suárez A., Vidal-López A.: Existence and nonexistence of unbounded forwards attractor for a class of nonautonomous reaction diffusion equations. Discrete Contin. Dyn. Syst. 18(2–3), 483–497 (2007)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Pliss V.A., Sell G.R.: Robustness of exponential dichotomy in infinite-dimensional systems. J. Dyn. Differ. Equ. 11(3), 471–513 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Pliss V.A., Sell G.R.: Perturbations of foliated bundles of evolutionary equations. Ann. Mat. 185, S325–S388 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Raugel, G.: Dynamics of Partial Differential Equations on Thin Domains. Lecture Notes in Mathematics, vol. 1609, pp. 208–315. Springer, Berlin (1995)Google Scholar
  37. 37.
    Raugel, G.: Global attractors in partial differential equations. In: Fiedler, B. (ed.) Handbook of Dynamical Systems, vol. 2, pp. 885–982. Elsevier Sciences, B.V., Amsterdam (2002)Google Scholar
  38. 38.
    Robinson J.C.: Infinite-Dimensional Dynamical Systems. Cambridge University Pres, Cambridge (2001)CrossRefGoogle Scholar
  39. 39.
    Rodriguez-Bernal A.: A singular perturbation in a linear parabolic equation with terms concentrating on the boundary. Rev. Mat. Complut. 25(1), 165–197 (2012)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Sell G.R., You Y.: Dynamics of Evolutionary Equations, Applied Mathemathical Sciences, vol. 143. Springer, New York (2002)Google Scholar
  41. 41.
    Sacker R.J., Sell G.R.: Dichotomies for linear evolutionary equations in Banach spaces. J. Differ. Equ. 113(1), 17–67 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Temam R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)zbMATHCrossRefGoogle Scholar
  43. 43.
    Vishik, M.I., Zelik, S.V., Chepyzhov, V.V.: Regular attractors and their nonautonomous perturbations. Mat. Sb., to appearGoogle Scholar
  44. 44.
    Yi Y.: A generalized integral manifold theorem. J. Differ. Equ. 102, 153–187 (1993)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • José M. Arrieta
    • 1
    Email author
  • Alexandre N. Carvalho
    • 2
  • José A. Langa
    • 3
  • Aníbal Rodriguez-Bernal
    • 1
  1. 1.Departamento de Matemática Aplicada, Facultad de MatemáticasUniversidad Complutense de MadridMadridSpain
  2. 2.Instituto de Ciências Matemáticas e de ComputaçaoUniversidade de São PauloSão CarlosBrazil
  3. 3.Departamento de Ecuaciones Diferenciales y Análisis NuméricoUniversidad de SevillaSevillaSpain

Personalised recommendations