Journal of Dynamics and Differential Equations

, Volume 23, Issue 1, pp 213–223

Local Fixed Point Indices of Iterations of Planar Maps

  • Grzegorz Graff
  • Piotr Nowak-Przygodzki
  • Francisco R. Ruiz del Portal
Open Access
Article

Abstract

Let \({f: U\rightarrow {\mathbb R}^2}\) be a continuous map, where U is an open subset of \({{\mathbb R}^2}\). We consider a fixed point p of f which is neither a sink nor a source and such that {p} is an isolated invariant set. Under these assumption we prove, using Conley index methods and Nielsen theory, that the sequence of fixed point indices of iterations \({\{{\rm ind}(f^n,p)\}_{n=1}^\infty}\) is periodic, bounded from above by 1, and has infinitely many non-positive terms, which is a generalization of Le Calvez and Yoccoz theorem (Annals of Math., 146, 241–293 (1997)) onto the class of non-injective maps. We apply our result to study the dynamics of continuous maps on 2-dimensional sphere.

Keywords

Fixed point index Conley index Nielsen number Periodic points Iterations 

Mathematics Subject Classification (2000)

Primary 37C25 Secondary 37E30 37B30 

References

  1. 1.
    Babenko I.K., Bogatyi S.A.: The behavior of the index of periodic points under iterations of a mapping. Math. USSR Izv. 38, 1–26 (1992)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bernardes N.: On the set of points with a dense orbit. Proc. Amer. Math. Soc. 128(11), 3421–3423 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bogatyi, S.A.: Local indices of iterations of a holomorphic mapping. (Russian) General topology. Spaces and mappings, 48–61, Moskov. Gos. Univ., Moscow, (1989)Google Scholar
  4. 4.
    Chow, S.N., Mallet-Parret, J., Yorke, J.A.: A periodic point index which is a bifurcation invariant, Geometric dynamics (Rio de Janeiro, 1981), 109–131, Springer Lecture Notes in Math. 1007, Berlin (1983)Google Scholar
  5. 5.
    Dold A.: Fixed point indices of iterated maps. Invent. Math. 74, 419–435 (1983)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fagella N., Llibre J.: Periodic points of holomorphic maps via Lefschetz numbers. Trans. Amer. Math. Soc. 352(10), 4711–4730 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Franks J.: The Conley index and non-existence of minimal homeomorphisms. Illinois J. Math. 43(3), 457–464 (1999)MATHMathSciNetGoogle Scholar
  8. 8.
    Franks J., Richeson D.: Shift equivalence and the Conley index. Trans. Amer. Math. Soc. 352(7), 3305–3322 (2000)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Graff G., Nowak-Przygodzki P.: Fixed point indices of iterations of C 1 maps in \({{\mathbb R}^3}\) . Discrete Cont. Dyn. Syst. 16(4), 843–856 (2006)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Graff G., Nowak-Przygodzki P.: Sequences of fixed point indices of iterations in dimension 2. Univ. Iagel. Acta Math. XLI, 135–140 (2003)MathSciNetGoogle Scholar
  11. 11.
    Jezierski, J., Marzantowicz, W.: Homotopy methods in topological fixed and periodic points theory, topological fixed point theory and its applications, 3. Springer, Dordrecht (2005)Google Scholar
  12. 12.
    Jiang B.J.: Bounds for fixed points on surfaces. Math. Ann. 311(3), 467–479 (1998)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Jiang, B.J.: Lectures on the Nielsen fixed point theory, Contemp. Math. 14, Amer. Math. Soc., Providence (1983)Google Scholar
  14. 14.
    Le Calvez P.: Dynamique des homomorphismes du plan au voisinage d’un point fixe. Ann. Sci. École Norm. Sup. (4) 36(1), 139–171 (2003)MATHMathSciNetGoogle Scholar
  15. 15.
    Le Calvez P., Salazar J.M., Ruiz del Portal F.R.: Fixed point indices of the iterates of \({{\mathbb R}^3}\) -homeomorphisms at fixed points which are isolated invariant sets. J. London Math. Soc. 82(2), 683–696 (2010)MATHCrossRefGoogle Scholar
  16. 16.
    Le Calvez P., Yoccoz J.-C.: Un théoreme d’indice pour les homéomorphismes du plan au voisinage d’un point fixe. Annals of Math. 146, 241–293 (1997)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Mischaikow K., Mrozek M.: Conley index. Handbook of dynamical systems, vol. 2, pp. 393–460. North-Holland, Amsterdam (2002)CrossRefGoogle Scholar
  18. 18.
    Marzantowicz W., Przygodzki P.: Finding periodic points of a map by use of a k-adic expansion. Discrete Contin. Dyn. Syst. 5, 495–514 (1999)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Mauldin, R.D. (red): The Scottish book, Birkhäuser, Boston (1981)Google Scholar
  20. 20.
    Ruiz del Portal, F.R., Salazar, J.M.: A Poincaré formula for the fixed point indices of the iterates of arbitrary planar homeomorphisms, Fixed Point Theory Appl. Art. ID 323069, pp. 31 (2010)Google Scholar
  21. 21.
    Ruiz del Portal F.R., Salazar J.M.: A stable/unstable manifold theorem for local homeomorphisms of the plane. Ergodic Theory Dynam. Systems 25(1), 301–317 (2005)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Ruiz del Portal F.R., Salazar J.M.: Fixed point index of iterations of local homeomorphisms of the plane: a Conley index approach. Topology 41(6), 1199–1212 (2002)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Ruiz del Portal F.R., Salazar J.M.: Indices of the iterates of \({{\mathbb R}^3}\) -homeomorphisms at Lyapunov stable fixed points. J. Diff. Eq. 244(5), 1141–1156 (2008)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Shub M., Sullivan P.: A remark on the Lefschetz fixed point formula for differentiable maps. Topology 13, 189–191 (1974)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Zhang G.Y.: Fixed point indices and invariant periodic sets of holomorphic systems. Proc. Amer. Math. Soc. 135(3), 767–776 (2007) (electronic)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Zhang G.Y.: Fixed point indices and periodic points of holomorphic mappings. Math. Ann. 337(2), 401–433 (2007)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Grzegorz Graff
    • 1
  • Piotr Nowak-Przygodzki
    • 1
  • Francisco R. Ruiz del Portal
    • 2
  1. 1.Faculty of Applied Physics and MathematicsGdansk University of TechnologyGdanskPoland
  2. 2.Departamento de Geometría y Topología Facultad de CC.MatemáticasUniversidad Complutense de MadridMadridSpain

Personalised recommendations