Journal of Dynamics and Differential Equations

, Volume 23, Issue 1, pp 213–223

Local Fixed Point Indices of Iterations of Planar Maps

  • Grzegorz Graff
  • Piotr Nowak-Przygodzki
  • Francisco R. Ruiz del Portal
Open Access
Article

DOI: 10.1007/s10884-011-9204-7

Cite this article as:
Graff, G., Nowak-Przygodzki, P. & Ruiz del Portal, F.R. J Dyn Diff Equat (2011) 23: 213. doi:10.1007/s10884-011-9204-7

Abstract

Let \({f: U\rightarrow {\mathbb R}^2}\) be a continuous map, where U is an open subset of \({{\mathbb R}^2}\). We consider a fixed point p of f which is neither a sink nor a source and such that {p} is an isolated invariant set. Under these assumption we prove, using Conley index methods and Nielsen theory, that the sequence of fixed point indices of iterations \({\{{\rm ind}(f^n,p)\}_{n=1}^\infty}\) is periodic, bounded from above by 1, and has infinitely many non-positive terms, which is a generalization of Le Calvez and Yoccoz theorem (Annals of Math., 146, 241–293 (1997)) onto the class of non-injective maps. We apply our result to study the dynamics of continuous maps on 2-dimensional sphere.

Keywords

Fixed point index Conley index Nielsen number Periodic points Iterations 

Mathematics Subject Classification (2000)

Primary 37C25 Secondary 37E30 37B30 
Download to read the full article text

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Grzegorz Graff
    • 1
  • Piotr Nowak-Przygodzki
    • 1
  • Francisco R. Ruiz del Portal
    • 2
  1. 1.Faculty of Applied Physics and MathematicsGdansk University of TechnologyGdanskPoland
  2. 2.Departamento de Geometría y Topología Facultad de CC.MatemáticasUniversidad Complutense de MadridMadridSpain

Personalised recommendations